Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (4): 85-92    DOI: 10.13523/j.cb.2109021
    
Research Progress of WIND Transcription Factor Responsing to Wound Stress and Organ Growth in Plants
HOU Si-jia,ZHANG Qian-qian,SUN Zhen-mei,CHEN Jing,MENG Jian-qiao,LIANG Dan,WU Rong-ling,GUO Yun-qian**()
College of Biological Science and Technology, Beijing Forestry University, Center for Computational Biology, Beijing 100083, China
Download: HTML   PDF(1213KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Wound induced dedifferentiation(WIND) is one of the members of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF), a large transcription factor gene family, which exists in all plants. Currently, most of the researches of WIND transcription factor focus on the Arabidopsis thaliana, but there are few studies on other plants. As a summary of the researches in recent years on the roles of WIND gene in plant wound signal response, the formation of callus, plant growth and metabolism, and epigenetic regulation, the present review is expected to provide a theoretical basis for further research on the function and application of WIND gene.



Key wordsAP2/ERF gene family      Transcription factor      WIND      Biological functions     
Received: 08 September 2021      Published: 05 May 2022
ZTFLH:  Q819  
Corresponding Authors: Yun-qian GUO     E-mail: guoyunqian@bjfu.edu.cn
Cite this article:

HOU Si-jia,ZHANG Qian-qian,SUN Zhen-mei,CHEN Jing,MENG Jian-qiao,LIANG Dan,WU Rong-ling,GUO Yun-qian. Research Progress of WIND Transcription Factor Responsing to Wound Stress and Organ Growth in Plants. China Biotechnology, 2022, 42(4): 85-92.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2109021     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I4/85

生物学功能 基因 物种 参考文献
伤口信号转导 WIND1Fm WIND1 拟南芥、水曲柳 [14,26]
控制细胞的脱分化 WIND1WIND2WIND3WIND4 拟南芥 [26,29]
促进愈伤组织形成 WIND1Fm WIND1 拟南芥、水曲柳 [1,30]
不定芽再生 WIND1Fm WIND1 拟南芥、水曲柳 [27]
不定根再生 WIND1 拟南芥 [31-32]
与其他转录因子协同作用 WIND1 拟南芥 [33]
表观遗传修饰 WIND1WIND2WIND3Fm WIND1 拟南芥、水曲柳 [34-35]
Table 1 Recent advances in biological function of WIND genes
Fig.1 Molecular network regulating WIND expressing in many biological processes Wounding:The wound to stimulate; Auxin:Indole-3-acetic acid; H3K27me3:Histone 3 trimethylation at lysine 27; PRC2: POLYCOMB REPRESSIVE COMPLEX 2; LEC2:LEAFY COTYLEDON 1; →:The positive feedback; ⊥:The negative feedback
[1]   Ikeuchi M, Ogawa Y, Iwase A, et al. Plant regeneration: cellular origins and molecular mechanisms. Development (Cambridge, England), 2016, 143(9): 1442-1451.
doi: 10.1242/dev.134668
[2]   Thorpe T A. History of plant tissue culture. Molecular Biotechnology, 2007, 37(2): 169-180.
doi: 10.1007/s12033-007-0031-3
[3]   Birnbaum K D, Alvarado A S. Slicing across kingdoms: regeneration in plants and animals. Cell, 2008, 132(4): 697-710.
doi: 10.1016/j.cell.2008.01.040 pmid: 18295584
[4]   Tanaka E M, Reddien P W. The cellular basis for animal regeneration. Developmental Cell, 2011, 21(1): 172-185.
doi: 10.1016/j.devcel.2011.06.016 pmid: 21763617
[5]   Skoog F, Miller C O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symposia of the Society for Experimental Biology, 1957, 11: 118-130.
[6]   Valvekens D, van Montagu M, van Lijsebettens M.Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proceedings of the National Academy of Sciences of the United States of America, 1988, 85(15): 5536-5540.
[7]   Che P, Lall S, Howell S H. Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta, 2007, 226(5): 1183-1194.
doi: 10.1007/s00425-007-0565-4
[8]   Atta R, Laurens L, Boucheron-Dubuisson E, et al. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. The Plant Journal: for Cell and Molecular Biology, 2009, 57(4): 626-644.
doi: 10.1111/j.1365-313X.2008.03715.x
[9]   Sugimoto K, Jiao Y L, Meyerowitz E M. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Developmental Cell, 2010, 18(3): 463-471.
doi: 10.1016/j.devcel.2010.02.004 pmid: 20230752
[10]   张麒, 陈静, 李俐, 等. 植物AP2/ERF转录因子家族的研究进展. 生物技术通报, 2018, 34(8): 1-7.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-1142
[10]   Zhang Q, Chen J, Li L, et al. Research progress on plant AP2/ERF transcription factor family. Biotechnology Bulletin, 2018, 34(8): 1-7.
doi: 10.13560/j.cnki.biotech.bull.1985.2017-1142
[11]   孙滨, 占小登, 曹立勇, 等. 水稻AP2/ERF转录因子的研究进展. 农业生物技术学报, 2017, 25(11): 1860-1869.
[11]   Sun B, Zhan X D, Cao L Y, et al. Research progress of AP2/ERF transcription factor in rice(Oryza sativa). Journal of Agricultural Biotechnology, 2017, 25(11): 1860-1869.
[12]   赵金玲, 姚文静, 王升级, 等. 杨树AP2/ERF转录因子家族生物信息学分析. 东北林业大学学报, 2015, 43(10): 21-29.
[12]   Zhao J L, Yao W J, Wang S J, et al. AP2/ERF gene family in Populus trichocarpa by bioinformatics. Journal of Northeast Forestry University, 2015, 43(10): 21-29.
[13]   Sakuma Y, Liu Q, Dubouzet J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 2002, 290(3): 998-1009.
pmid: 11798174
[14]   Heyman J, Canher B, Bisht A, et al. Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair. Journal of Cell Science, 2018, 131(2): jcs208215.
[15]   Rashid M, He G Y, Yang G X, et al. AP2/ERF transcription factor in rice: genome-wide canvas and syntenic relationships between monocots and eudicots. Evolutionary Bioinformatics Online, 2012, 8: 321-355.
[16]   Elliott R C, Betzner A S, Huttner E, et al. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. The Plant Cell, 1996, 8(2): 155-168.
[17]   Boutilier K, Offringa R, Sharma V K, et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. The Plant Cell, 2002, 14(8): 1737-1749.
doi: 10.1105/tpc.001941
[18]   Yamaguchi-Shinozaki K, Shinozaki K. A novel Cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell, 1994, 6(2): 251-264.
[19]   Thomashow M F. PLANT COLD ACCLIMATION: freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 571-599.
pmid: 15012220
[20]   Hao D Y, Ohme-Takagi M, Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. Journal of Biological Chemistry, 1998, 273(41): 26857-26861.
doi: 10.1074/jbc.273.41.26857 pmid: 9756931
[21]   Alonso J M, Stepanova A N, Leisse T J, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science, 2003, 301(5633): 653-657.
pmid: 12893945
[22]   HU Y X, WANG Y H, LIU X F, et al. Arabidopsis RAV 1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Research, 2004, 14 (1): 8-15.
doi: 10.1038/sj.cr.7290197
[23]   Sohn K H, Lee S C, Jung H W, et al. Expression and functional roles of the pepper pathogen-induced transcription factor RAV 1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Molecular Biology, 2006, 61(6): 897-915.
doi: 10.1007/s11103-006-0057-0
[24]   Lin R C, Park H J, Wang H Y. Role of Arabidopsis RAP2.4 in regulating light- and ethylene-mediated developmental processes and drought stress tolerance. Molecular Plant, 2008, 1(1): 42-57.
doi: 10.1093/mp/ssm004
[25]   Okamuro J K, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(13): 7076-7081.
[26]   Iwase A, Ohme-Takagi M, Sugimoto K. WIND1: a key molecular switch for plant cell dedifferentiation. Plant Signaling & Behavior, 2011, 6(12): 1943-1945.
[27]   Iwase A, Harashima H, Ikeuchi M, et al. WIND 1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. The Plant Cell, 2017, 29(1): 54-69.
doi: 10.1105/tpc.16.00623
[28]   Zhou C, Guo J S, Feng Z H, et al. Molecular characterization of a novel AP 2 transcription factor ThWIND1-L from Thellungiella halophila. Plant Cell, Tissue and Organ Culture (PCTOC), 2012, 110(3): 423-433.
doi: 10.1007/s11240-012-0163-4
[29]   Iwase A, Mitsuda N, Koyama T, et al. The AP2/ERF transcription factor WIND 1 controls cell dedifferentiation in Arabidopsis. Current Biology, 2011, 21(6): 508-514.
doi: 10.1016/j.cub.2011.02.020
[30]   Müller B, Sheen J. Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature, 2008, 453 (7198): 1094-1097.
doi: 10.1038/nature06943
[31]   Sheng L H, Hu X M, Du Y J, et al. Non-canonical WOX11-mediated root branching contributes to plasticity in Arabidopsis root system architecture. Development (Cambridge, England), 2017, 144(17): 3126-3133.
[32]   Liu J C, Sheng L H, Xu Y Q, et al. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. The Plant Cell, 2014, 26(3): 1081-1093.
doi: 10.1105/tpc.114.122887
[33]   Iwase A, Mita K, Nonaka S, et al. WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed. Journal of Plant Research, 2015, 128(3): 389-397.
doi: 10.1007/s10265-015-0714-y
[34]   Ikeuchi M, Iwase A, Rymen B, et al. PRC 2 represses dedifferentiation of mature somatic cells in Arabidopsis. Nature Plants, 2015, 1(7): 15089.
doi: 10.1038/nplants.2015.89
[35]   Bouyer D, Roudier F, Heese M, et al. Polycomb repressive complex 2 controls the embryo-to-seedling phase transition[J]PLoS Genet, 2011, 7(3): e1002014.
doi: 10.1371/journal.pgen.1002014
[36]   Druege U, Franken P, Hajirezaei M R. Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Frontiers in Plant Science, 2016, 7: 381.
doi: 10.3389/fpls.2016.00381 pmid: 27064322
[37]   Ahkami A H, Lischewski S, Haensch K T, et al. Molecular physiology of adventitious root formation in Petunia hybrida cuttings: involvement of wound response and primary metabolism. The New Phytologist, 2009, 181(3): 613-625.
doi: 10.1111/j.1469-8137.2008.02704.x
[38]   Iwase A, Ishii H, Aoyagi H, et al. Comparative analyses of the gene expression profiles of Arabidopsis intact plant and cultured cells. Biotechnology Letters, 2005, 27(15): 1097-1103.
doi: 10.1007/s10529-005-8456-x
[39]   Iwase A, Mitsuda N, Ikeuchi M, et al. Arabidopsis WIND 1 induces callus formation in rapeseed, tomato, and tobacco. Plant Signaling & Behavior, 2013, 8(12): e27432.
[40]   Stappenbeck T S, Miyoshi H. The role of stromal stem cells in tissue regeneration and wound repair. Science, 2009, 324(5935): 1666-1669.
doi: 10.1126/science.1172687 pmid: 19556498
[41]   Ikeuchi M, Iwase A, Rymen B, et al. Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiology, 2017, 175(3): 1158-1174.
doi: 10.1104/pp.17.01035 pmid: 28904073
[42]   Ozawa S, Yasutani I, Fukuda H, et al. Organogenic responses in tissue culture of srd mutants of Arabidopsis thaliana. Development (Cambridge, England), 1998, 125(1): 135-142.
doi: 10.1242/dev.125.1.135
[43]   Che P, Gingerich D J, Lall S, et al. Global and hormone-induced gene expression changes during shoot development in Arabidopsis. The Plant Cell, 2002, 14(11): 2771-2785.
doi: 10.1105/tpc.006668
[44]   Gallois J L, Nora F R, Mizukami Y, et al. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes & Development, 2004, 18(4): 375-380.
doi: 10.1101/gad.291204
[45]   Gordon S P, Heisler M G, Reddy G V, et al. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development (Cambridge, England), 2007, 134(19): 3539-3548.
doi: 10.1242/dev.010298
[46]   Meng W J, Cheng Z J, Sang Y L, et al. Type-B Arabidopsis RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL. The Plant Cell, 2017, 29(6): 1357-1372.
doi: 10.1105/tpc.16.00640
[47]   Wang J, Tian C H, Zhang C, et al. Cytokinin signaling activates WUSCHEL expression during axillary meristem initiation. The Plant Cell, 2017, 29(6): 1373-1387.
doi: 10.1105/tpc.16.00579 pmid: 28576845
[48]   Zhang T Q, Lian H, Zhou C M, et al. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. The Plant Cell, 2017, 29(5): 1073-1087.
doi: 10.1105/tpc.16.00863
[49]   Zubo Y O, Blakley I C, Yamburenko M V, et al. Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(29): E5995-E6004.
[50]   Che P, Lall S, Nettleton D, et al. Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiology, 2006, 141(2): 620-637.
doi: 10.1104/pp.106.081240
[51]   Banno H, Ikeda Y, Niu Q W, et al. Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. The Plant Cell, 2001, 13(12): 2609-2618.
doi: 10.1105/tpc.010234
[52]   Kirch T, Simon R, Grünewald M, et al. The DORNROSCHEN/ENHANCER OF SHOOT REGENERATION1 gene of Arabidopsis acts in the control of meristem ccll fate and lateral organ development. The Plant Cell, 2003, 15(3): 694-705.
doi: 10.1105/tpc.009480
[53]   Matsuo N, Makino M, Banno H. Arabidopsis enhancer of shoot regeneration (esr)1 and esr2 regulate in vitro shoot regeneration and their expressions are differentially regulated. Plant Science, 2011, 181(1): 39-46.
doi: 10.1016/j.plantsci.2011.03.007 pmid: 21600396
[54]   Chatfield S P, Capron R, Severino A, et al. Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems. The Plant Journal: for Cell and Molecular Biology, 2013, 73(5): 798-813.
doi: 10.1111/tpj.12085
[55]   Cheng Z J, Wang L, Sun W, et al. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiology, 2013, 161(1): 240-251.
doi: 10.1104/pp.112.203166 pmid: 23124326
[56]   Efroni I, Mello A, Nawy T, et al. Root regeneration triggers an embryo-like sequence guided by hormonal interactions. Cell, 2016, 165(7): 1721-1733.
doi: S0092-8674(16)30491-3 pmid: 27212234
[57]   Heyman J, Cools T, Canher B, et al. The heterodimeric transcription factor complex ERF115-PAT 1 grants regeneration competence. Nature Plants, 2016, 2: 16165.
doi: 10.1038/nplants.2016.165 pmid: 27797356
[58]   Ledwoń A, Gaj M D. LEAFY COTYLEDON2 gene expression and auxin treatment in relation to embryogenic capacity of Arabidopsis somatic cells. Plant Cell Reports, 2009, 28(11): 1677-1688.
doi: 10.1007/s00299-009-0767-2
[59]   Ikeuchi M, Iwase A, Sugimoto K. Control of plant cell differentiation by histone modification and DNA methylation. Current Opinion in Plant Biology, 2015, 28: 60-67.
doi: 10.1016/j.pbi.2015.09.004 pmid: 26454697
[60]   Holec S, Berger F. Polycomb group complexes mediate developmental transitions in plants. Plant Physiology, 2011, 158(1): 35-43.
doi: 10.1104/pp.111.186445
[61]   He C S, Chen X F, Huang H, et al. Reprogramming of H3K27me 3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLoS Genetics, 2012, 8(8): e1002911.
doi: 10.1371/journal.pgen.1002911
[62]   Bellini C, Pacurar D I, Perrone I. Adventitious roots and lateral roots: similarities and differences. Annual Review of Plant Biology, 2014, 65: 639-666.
doi: 10.1146/annurev-arplant-050213-035645
[63]   Verstraeten I, Schotte S, Geelen D. Hypocotyl adventitious root organogenesis differs from lateral root development. Frontiers in Plant Science, 2014, 5: 495.
doi: 10.3389/fpls.2014.00495 pmid: 25324849
[64]   Pacurar D I, Pacurar M L, Lakehal A, et al. The Arabidopsis Cop 9 signalosome subunit 4 (CSN4) is involved in adventitious root formation. Scientific Reports, 2017, 7: 628.
doi: 10.1038/s41598-017-00744-1 pmid: 28377589
[1] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[2] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[3] Wen-ran YUE,Jun-yan YUE,Xiu-juan ZHANG,Qi YANG,Xiao-dong HAN,Rui-gang WANG,Guo-jing LI. The CiNAC1 from Caragana intermedia Promotes Transgenic Arabidopsis Leaf Senescence[J]. China Biotechnology, 2018, 38(4): 24-29.
[4] Jia-wei XU,Hua HE,Jing ZHANG,Chu-chao LEI,Hong CHENG,Yong-zhen HUANG. Research Progress on the Structure and Function of Transcription Factor KLF8 Gene[J]. China Biotechnology, 2018, 38(4): 90-95.
[5] SUN Ze-xu, ZHAO Chen, LIAO Jun-yi, WANG Qi, XU Wei, CHEN Cheng, HUANG Wei. Suppression of Runx2 Potentiates BMP2-induced Chondrogenic Differentiation[J]. China Biotechnology, 2016, 36(4): 57-62.
[6] MA Li, WU Hao, WANG Bin-bin, QIAO Jian-jun, ZHU Hong-ji. Progress in Functions and Regulatory Mechanisms of the Transcription Factor Rex[J]. China Biotechnology, 2016, 36(10): 94-100.
[7] LIANG Li-zhu, SUN Jia-nan, LI Kai, LIU Ming-wei, DING Chen, QIN Jun. Proteome-wide Screening of Transcription Factor DNA Binding Activity in HepG2 Cells after Oleic Acid Treatment[J]. China Biotechnology, 2015, 35(5): 22-31.
[8] FENG Tian-xiang, WANG Ling, CHEN Hai-min, SHENG Qing, ZUO Rui, XIE Wen-jie. Research Advances on Function and Bioactive Substances of Endophytic actinomycetes[J]. China Biotechnology, 2015, 35(4): 98-106.
[9] QIN Yao, ZHAO Hong-yan, ZHANG Wen-hang, WANG Dong-mei. Generation of Mitochondrial Transcription Factor a Knockdown Transgenic Mice[J]. China Biotechnology, 2014, 34(7): 44-48.
[10] CHENG Zhi-yong, LIANG Wen-tong, WANG Su-yun, YAN Xiao-yan, LI Hua, WANG Bao-yan, TIAN He, WEI Yu-tao, LU Xi. Mechanism of PTEN/NF-κB/Caspase Pathway on Adriamycin Resistance Reversal in K562/ADM Cells[J]. China Biotechnology, 2013, 33(3): 54-60.
[11] SUN Hao, LU Cun-fu, GUO Yun-qian. LSD1 Regulates the Generation of Induced Pluripotent Stem Cells via Interaction with Oct4/Nanog[J]. China Biotechnology, 2012, 32(12): 25-29.
[12] LI Jia-ping, ZHANG Xian-wen, CHEN Xin-bo. The Co-occurrence of Transcription Factor Binding Sites[J]. China Biotechnology, 2012, 32(09): 87-94.
[13] YU Zhi-liang, ZHOU Ning, QIAO Hua. Advances in L-amino Acid Oxidase[J]. China Biotechnology, 2012, 32(03): 125-135.
[14] . Progress on transcription factor in Gene Engineering of Diseases Resistances in Plants[J]. China Biotechnology, 2010, 30(10): 0-0.
[15] WAN Bing-liang, ZHA Zhong-ping, DU Xue-shu. Expression Profile Analysis of Rice Heat Shock Transcription Factor (HSF) Genes in Response to Plant Hormones and Abiotic Stresses[J]. China Biotechnology, 2010, 30(10): 22-32.