Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (4): 90-95    DOI: 10.13523/j.cb.20180412
    
Research Progress on the Structure and Function of Transcription Factor KLF8 Gene
Jia-wei XU1,Hua HE2,Jing ZHANG1,Chu-chao LEI1,Hong CHENG1,Yong-zhen HUANG1()
1 College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling 712100, China
2 College of Animal Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China
Download: HTML   PDF(605KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

With the progress of molecular biology research, the influence of various biological characteristics of the organism seeks the reason at the molecular level. Transcription factors as the important protein regulate gene transcription, and they have been explore the types and functional identification. KLF8 (Krüppel-like factor 8) is a transcription factor belonging to the family of Krüppel-like factors (KLFs), which plays a significant role in cell invasion and epithelial-mesenchymal transition, cell carcinogenesis and tumor, cell cycle and adiposity differentiation. Due to its various biological functions, it gradually becomes a hot spot for researchers to explore. The structure and function of this transcription factor has been well understood. The research progress on the molecular structure and biological characteristics of KLF8 gene and protein are explained. The gene can be used as a genetic marker and provide a reference for related research such as cancer regulation, obesity treatment and basic research.



Key wordsKLF8 gene      Transcription factor      Structural characteristics      Biological function     
Received: 03 October 2017      Published: 08 May 2018
ZTFLH:  Q78  
Cite this article:

Jia-wei XU,Hua HE,Jing ZHANG,Chu-chao LEI,Hong CHENG,Yong-zhen HUANG. Research Progress on the Structure and Function of Transcription Factor KLF8 Gene. China Biotechnology, 2018, 38(4): 90-95.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180412     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I4/90

Fig.1 Schematic diagram of the linear structure of KLF8 protein molecule
Fig.2 Schematic diagram of the role of KLF8 in the cell cycle
Fig.3 KLF8 relies on two pathways involved in EMT
Fig.4 KLF8 is involved in adipocyte differentiation
[1]   van Vliet J, Turner J, Crossley M , et al. Human Krüppel-like factor 8:a CACCC-box binding protein that associated with CtBP and represses transcription. Nucleic Acids Research, 2000,28(9):1955-1962.
doi: 10.1093/nar/28.9.1955 pmid: 103308
[2]   杨中玫, 罗欣, 白冰 , 等. KLF8在人早孕绒毛组织中的表达及其意义. 重庆医科大学学报, 2013,38(10):1133-1137.
[2]   Yang Z M, Luo X, Bai B , et al. Expression and significance of Krüpple-like factor 8 in human villous tissues during early pregnancy. Journal of Chongqing Medical University, 2013,38(10):1133-1137.
[3]   Eaton S A, Funnell A P, Sue N , et al. A network of Krüppel-like factors(Klfs).Klf8 is repressed by Klf3 and activated by Klf1 in vivo. Journal of Biological Chemistry, 2008,283(40):26937-26947.
doi: 10.1074/jbc.M804831200
[4]   Wei H, Wang X, Gan B , et al. Sumoylation delimits KLF8 transcriptional activity associated with the cell cycle regulation. Journal of Biological Chemistry, 2006,281(24):16664-16671.
doi: 10.1074/jbc.M513135200 pmid: 16617055
[5]   Urvalek A M, Wang X H, Lu H , et al. KLF8 recruits the p300 and PCAF co-activators to its amino terminal activation domain to activate transcription. Cell Cycle, 2010,9(3):601-611.
doi: 10.4161/cc.9.3.10606 pmid: 20107328
[6]   Mehta T S, Lu H, Wang X H , et al. A unique sequence in the N-terminal regulatory region controlsthe nuclear localization of KLF8 by cooperating with the C-terminal zinc-fingers. Cell Research, 2009,19(9):1098-109.
doi: 10.1038/cr.2009.64 pmid: 19488069
[7]   Javle M, Curtin N J . The role of PARP in DNA repair and its therapeutic exploitation. British Journal of Cancer, 2011,105(8):1114-1122.
doi: 10.1038/bjc.2011.382 pmid: 3208503
[8]   Lu H, Wang X, Li T , et al. Identification of poly (ADP-ribose) polymerase-1(PARP-1) as a novel Krüppel-like factor 8-interacting and -regulating protein. Journal of Biological Chemistry, 2011,286(23):20335-20344.
doi: 10.1074/jbc.M110.215632
[9]   Urvalek A M, Lu H, Wang X , et al. Regulation of the oncoprotein KLF8 by a switch between acetylation and sumoylation. American Journal of Translational Research, 2011,3(2):121-132.
doi: 10.1016/B978-0-12-385524-4.00004-0 pmid: 3056558
[10]   Miranti C K, Brugge J S . Sensing the environment: a historical perspective on integrin signal transduction. Nature Cell Biology, 2002,4(4):E83-E90.
doi: 10.1038/ncb0402-e83 pmid: 11944041
[11]   Zhao J, Bian Z C, Yee K , et al. Identification of transcription factor KLF8 as a downstream target of focal adhesion kinase in its regulation of cyclin D1 and cell cycle progression. Molecular Cell, 2003,11(6):1503-1515.
doi: 10.1016/S1097-2765(03)00179-5 pmid: 12820964
[12]   Nawshad A, Lagamba D, Polad A , et al. Transforming growth factor-beta signaling during epithelial-mesenchymal transformation: implication for embryogenesis and tumor metastasis. Cells Tissues Organs, 2005,179(1):11-23.
doi: 10.1159/000084505 pmid: 15942189
[13]   Thiery J P . Epithelial-mesenchymal transitions in tumor progression.Nature Reviews. Cancer, 2002,2(6):442-454.
doi: 10.1038/nrc822 pmid: 12189386
[14]   Peinado H, Portillo F, Cano A , et al. Transcriptional regulation of cadherins during development and carcinogenesis. International Journal Development Biology, 2004,48(5-6):365-375.
doi: 10.1387/ijdb.041794hp pmid: 15349812
[15]   Li J C, Yang X R, Sun H X , et al. Up-regulation of Krüppel like factor 8 promotes tumor invasion and indicates poor prognosis for hepatocellular carcinoma. Gastroenterology, 2010,139(6):2146-2157,2309.
doi: 10.1053/j.gastro.2010.08.004 pmid: 20728449
[16]   严清青 . FHL2参与调节KLF8促进结直肠癌侵袭转移机制的研究. 广州:南方医科大学, 2015.
[16]   Yan Q Q . KLF8 promotes tumorigenesis, invasion and metastasis of colorectal cancer cells by transcriptional activation of FHL2. Guangdong:Southern Medical University, 2015.
[17]   胡文兵, 王刚胜, 陈曦 , 等. siRNA干扰KLF8表达对鼻咽癌细胞上皮间质转化的作用. 肿瘤防治研究, 2016,43(12):1055-1058.
doi: 10.3971/j.issn.1000-8578.2016.12.009
[17]   Hu W B, Wang G S, Chen X , et al. Effect of down-regulating KLF8 expression by siRNA on EMT in nasopharyngeal carcinoma cells. Cancer Research on Prevention and Treatment, 2016,43(12):1055-1058.
doi: 10.3971/j.issn.1000-8578.2016.12.009
[18]   Wang X H, Lu H, Urvalek A M , et al. KLF8 promotes human breast cancer cell invasion and metastasis by transcriptional activation of MMP9. Oncogene, 2011,30(16):1901-1911.
doi: 10.1038/onc.2010.563 pmid: 2020202021151179
[19]   Fu W J, Li J C, Wu X Y , et al. Small interference RNA targeting Krüppel-like factor 8 inhibits the renal carcinoma 786-0 cells growth in vitro and in vivo. Journal Cancer Research Clinical Oncology, 2010,136(8):1255-1265.
doi: 10.1007/s00432-010-0776-0 pmid: 20182889
[20]   孟庆禹, 赵超飞, 王雷 , 等. Krüppel样因子8对769-P肾癌细胞株体外扩增的影响及潜在调控靶点的筛选. 解放军医学院报, 2016,37(6):625-629.
doi: 10.3969/j.issn.2095-5227.2016.06.026
[20]   Meng Q Y, Zhao C F, Wang L , et al. Proliferation effect of KLF8 overexpression on renal cell carcinoma cell line 769-P and screening of its potential target gene. Academic Journal of Chinese PLA Medical School, 2016. 37(6):625-629.
doi: 10.3969/j.issn.2095-5227.2016.06.026
[21]   黄芳 . KLF8在胃癌发生发展中的作用. 苏州:苏州大学, 2013.
doi: 10.7666/d.Y2402826
[21]   Huang F . The role of KLF8 on the development of gastric cancer. Suzhou:Soochow University, 2013.
doi: 10.7666/d.Y2402826
[22]   杨雪, 王亚芳, 刘娜 , 等. siRNA下调KLF8对胃癌细胞SGC7901增殖能力的影响. 现代肿瘤医学, 2014,22(11):2519-2524.
[22]   Yang X, Wang Y F, Liu N , et al. Effect of downregulation KLF8 by siRNA on proliferation in gastric cancer cell SGC7901. Journal of Modern Oncology, 2014,22(11):2519-2524.
[23]   王静, 易宣洪 . 肺癌组织中转录因子KLF8的表达及下调肺癌细胞株中KLF8表达的生物学效应. 海南医学院院报, 2016,22(2):112-114.
doi: 10.13210/j.cnki.jhmu.20151014.008
[23]   Wang J, Yi X H , Expression of transcription factor Klf8 in lung cancer tissue and its biological effect on Klf8 expression in lung cancer cell lines. Journal of Hainan Medical University, 2016,22(2):112-114.
doi: 10.13210/j.cnki.jhmu.20151014.008
[24]   林峰 . KLF8 在调控人骨肉瘤细胞增殖和细胞侵袭中的作用. 苏州:苏州大学, 2015.
[24]   Lin F . Knockingdown of KLF8 suppresses proliferation and invasion in human osteosarcoma cells. Jiangsu:Soochow University, 2015.
[25]   范晓松 . KLF8蛋白在膀胱癌中的表达. 杭州:浙江大学, 2014.
[25]   Fan X S . Expression of KLF8 protein in bladder cancer. Zhejiang: Zhejiang University, 2014.
[26]   成撒诺, 徐亚丽, 戴晓波 , 等. Krüppel样转录因子8在肝细胞癌中经PI3K/Akt通路调控VEGFA的表达. 肿瘤, 2014,34(12):1075-1081.
[26]   Cheng S N, Xu Y L, Dai X B , et al. Krüppel-like transcription factor 8 regulates VEGFA expression in hepatocellular carcinoma throughPI3K/Akt signal pathway. Tumor, 2014,34(12):1075-1081.
[27]   Monti E , GariboldiMB, HIF-1 as a target for cancer chemotherapy, chemosensitizationandchemoprevention. Current Molecular Pharmacology, 2011,4(1):62-77.
doi: 10.2174/1874467211104010062 pmid: 20958262
[28]   Kienast Y, Klein C, Scheuer W , et al. Ang-2-VEGF-A CrossMab, a novel bispecific human IgG1 antibody blocking VEGF-A and Ang-2 functions simultaneously, mediates potent antitumor, antiangiogenic, and antimetastatic efficacy. Clinical Cancer Research, 2013,19(24):6730-6740.
doi: 10.1158/1078-0432.CCR-13-0081
[29]   何立丽, 张伟京, 苏航 , 等. Ang-2与VEGF的协同作用及其在抗肿瘤血管新生治疗中的应用. 中国实验血液学杂志, 2007,15(2):445-448.
doi: 10.3969/j.issn.1009-2137.2007.02.049
[29]   He L L, Zhang W J, Su H , et al. Synergism between Ang-2 and VEGF and its application of anti-angiogenesis is in tumor therapy. Journal of Experimental Hematology, 2007,15(2):445-448.
doi: 10.3969/j.issn.1009-2137.2007.02.049
[30]   段泽星, 谢立群 . VEGF在肿瘤生长和血管生成中的作用. 世界华人消化杂志, 2010,18(27):2894-2900.
doi: 10.11569/wcjd.v18.i27.2894
[30]   Duan Z X, Xi L Q . Role of the vascular endothelial growth factor signaling pathway in tumor growth and angiogenesis. World Chinese Journal of Digestology, 2010,18(27):2894-2900.
doi: 10.11569/wcjd.v18.i27.2894
[31]   李旭, 徐亚丽, 李英 , 等. 干扰Krüppel样因子8表达对肝癌SMMC7721细胞中血管生成相关因子的调控作用. 重庆医科大学学报, 2013,38(5):483-487.
[31]   Li X, Xu Y L, Li Y , et al. Regulation of altered Krüppel-like factor 8 expressions on angiogensisrelated factors of hepatocelluar carcinoma SMMC7721. Journal of Chongqing Medical University, 2013,38(5):483-487.
[32]   Lee H, Kim HJ, Lee YJ , et al. Krüppel-like factor KLF8 plays a critical role in adipocyte differentiation. PLoS One, 2012,7(12):e52474.
doi: 10.1371/journal.pone.0052474 pmid: 3528641
[33]   鞠大鹏, 詹丽杏 . 脂肪细胞分化及其调控的研究进展. 中国细胞生物学学报, 2010,32(5):690-695.
[33]   Ju D P, Zhan L X . Progress in adipocyte differentiation and its regulation. Chinese Journal of Cell Biology, 2010,32(5):695-695.
[1] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[2] WANG Yi-han,LI Hai-yan,XUE Yong-chang. The Structural Characteristics and Engineering Reconstruction of Flavin-dependent Halogenase[J]. China Biotechnology, 2021, 41(4): 74-80.
[3] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[4] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[5] Meng-ying OU,Xiao-zheng WANG,Shuang-jun LIN,Tong-wei GUAN,Yi-jin LIN. A Review of Studies on Streptonigrin[J]. China Biotechnology, 2019, 39(7): 100-107.
[6] Kai-xi JI,Dan JIAO,Zhong-kui XIE,Guo YANG,Zi-yuan DUAN. Advances and Prospects of Brown Adipocyte-Specific Gene PRDM16[J]. China Biotechnology, 2019, 39(4): 84-93.
[7] Wen-ran YUE,Jun-yan YUE,Xiu-juan ZHANG,Qi YANG,Xiao-dong HAN,Rui-gang WANG,Guo-jing LI. The CiNAC1 from Caragana intermedia Promotes Transgenic Arabidopsis Leaf Senescence[J]. China Biotechnology, 2018, 38(4): 24-29.
[8] SUN Ze-xu, ZHAO Chen, LIAO Jun-yi, WANG Qi, XU Wei, CHEN Cheng, HUANG Wei. Suppression of Runx2 Potentiates BMP2-induced Chondrogenic Differentiation[J]. China Biotechnology, 2016, 36(4): 57-62.
[9] MA Li, WU Hao, WANG Bin-bin, QIAO Jian-jun, ZHU Hong-ji. Progress in Functions and Regulatory Mechanisms of the Transcription Factor Rex[J]. China Biotechnology, 2016, 36(10): 94-100.
[10] LI Ran, WANG Tian, ZHU Hong-liang. Biological Function and Research Methods of Long Noncoding RNA[J]. China Biotechnology, 2015, 35(9): 66-70.
[11] LIANG Li-zhu, SUN Jia-nan, LI Kai, LIU Ming-wei, DING Chen, QIN Jun. Proteome-wide Screening of Transcription Factor DNA Binding Activity in HepG2 Cells after Oleic Acid Treatment[J]. China Biotechnology, 2015, 35(5): 22-31.
[12] FENG Tian-xiang, WANG Ling, CHEN Hai-min, SHENG Qing, ZUO Rui, XIE Wen-jie. Research Advances on Function and Bioactive Substances of Endophytic actinomycetes[J]. China Biotechnology, 2015, 35(4): 98-106.
[13] QIN Yao, ZHAO Hong-yan, ZHANG Wen-hang, WANG Dong-mei. Generation of Mitochondrial Transcription Factor a Knockdown Transgenic Mice[J]. China Biotechnology, 2014, 34(7): 44-48.
[14] CHENG Zhi-yong, LIANG Wen-tong, WANG Su-yun, YAN Xiao-yan, LI Hua, WANG Bao-yan, TIAN He, WEI Yu-tao, LU Xi. Mechanism of PTEN/NF-κB/Caspase Pathway on Adriamycin Resistance Reversal in K562/ADM Cells[J]. China Biotechnology, 2013, 33(3): 54-60.
[15] SUN Hao, LU Cun-fu, GUO Yun-qian. LSD1 Regulates the Generation of Induced Pluripotent Stem Cells via Interaction with Oct4/Nanog[J]. China Biotechnology, 2012, 32(12): 25-29.