Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (10): 93-104    DOI: 10.13523/j.cb.2207035
    
Induction and Regulation of Cellulase Synthesis in Trichoderma reesei
Xiang-zhi LIU1,Chi CHENG1,2,**(),Yue ZHAO1,Chao-jun WANG2,Ying ZHANG2,Chuang XUE1,2,**()
1. School of Bioengineering, Dalian University of Technology, Engineering Research Center of Application and Transformation for Synthetic Biology, Dalian 116024, China
2. Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
Download: HTML   PDF(1332KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

With the rise of green chemistry, research on the transformation and utilization of natural cellulose raw materials has been highly valued and widely applied. Cellulose degradation by cellulase has paved the way for fuel ethanol and biodiesel production. However, the high production cost of cellulase limits its industrial application. Trichoderma reesei is a cellulase-producing strain and produces abundant cellulase components. Comprehensive studies on the mechanism of cellulase induction and expression regulation of Trichoderma reesei are helpful to improve its cellulase production. In recent years great progress has been made on the induction process and regulation mechanism of cellulase production by Trichoderma reesei. This review summarizes recent progresses of the regulation of cellulase induction and gene expression by Trichoderma reesei, by first introducing the inducers (cellulose, cellobiose, sophorose, lactose, etc.) and their transporters, then summarizing the regulation function of several transcription factors, and moreover, the effects of chromosomal regulation, signaling pathway, and illumination conditions on cellulase induction are also introduced. Finally, the future research directions of cellulase induction in Trichoderma reesei was discussed, including exploring the nature and specific process of inducers, revealing the relationship between transcription factors and transcriptional regulatory network, searching for key functional proteins of signal transduction, and studying the effect of environmental factors on cellulase induction.



Key wordsCellulase      Trichoderma reesei      Gene expression regulation      Transcription factor     
Received: 18 July 2022      Published: 04 November 2022
ZTFLH:  Q819  
Corresponding Authors: Chi CHENG,Chuang XUE     E-mail: cheng.chi@dlut.edu.cn;xue.1@dlut.edu.cn
Cite this article:

Xiang-zhi LIU,Chi CHENG,Yue ZHAO,Chao-jun WANG,Ying ZHANG,Chuang XUE. Induction and Regulation of Cellulase Synthesis in Trichoderma reesei. China Biotechnology, 2022, 42(10): 93-104.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2207035     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I10/93

Fig.1 Schematic diagram of Trichoderma reesei cellulase synthesis induction and regulation
转录因子 作用对象 结合位点 引用
XYR1 cbh1等纤维素酶基因 GGC(A/T)3 [31]
ACE2 cbh1等纤维素酶基因、半纤维素酶基因xyn2 GGCTAATAA [40]
ACE3 cbh1crt1xyr1 CGGAN(T/A)3 [42]
ACE4 ACE3 两个相邻的-GGCC- [43]
VIB1 纤维素酶基因 [58]
CRZ1 cbh1xyr1 (T/G)GGCG或GGGC(G/T) [59]
LAE1 xyr1 [60]
AZF1 cel7acel45aswo1 [61]
CLP1 xyr1 [62]
GRD1 纤维素酶表达 [63]
CRE1 纤维素酶、转录因子、转运蛋白基因 [50]
CRE2 CRE1 [52]
CRE3 CRE1 [53]
CRE4 CRE1 [53]
ACE1 cbh1xyr1 AGGCA [33]
RCE1 cbh1 GGC(A/T)3 [64]
CTF1 cre1,抑制纤维素酶基因 [65]
Table 1 Transcriptional regulatory factors and their functions in Trichoderma reesei
[1]   Trivedi N, Reddy C R K, Lali A M. Marine microbes as a potential source of cellulolytic enzymes. Advances in Food and Nutrition Research, 2016, 79: 27-41.
doi: S1043-4526(16)30035-3 pmid: 27770862
[2]   Mansfield S D, Mooney C, Saddler J N. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnology Progress, 1999, 15(5): 804-816.
pmid: 10514250
[3]   Cherry J R, Fidantsef A L. Directed evolution of industrial enzymes: an update. Current Opinion in Biotechnology, 2003, 14(4): 438-443.
pmid: 12943855
[4]   Ilmén M, Saloheimo A, Onnela M L, et al. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Applied and Environmental Microbiology, 1997, 63(4): 1298-1306.
doi: 10.1128/aem.63.4.1298-1306.1997 pmid: 9097427
[5]   Carle-Urioste J C, Escobar-Vera J, El-Gogary S, et al. Cellulase induction in Trichoderma reesei by cellulose requires its own basal expression. Journal of Biological Chemistry, 1997, 272(15): 10169-10174.
doi: 10.1074/jbc.272.15.10169 pmid: 9092563
[6]   Kubicek C P, Muhlbauer G, Klotz M, et al. Properties of a conidial-bound cellulase enzyme system from Trichoderma reesei. Microbiology, 1988, 134(5): 1215-1222.
doi: 10.1099/00221287-134-5-1215
[7]   Sternberg D, Mandels G R. Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. Journal of Bacteriology, 1979, 139(3): 761-769.
doi: 10.1128/jb.139.3.761-769.1979 pmid: 39061
[8]   Vaheri M, Leisola M, Kauppinen V. Transglycosylation products of cellulase system of Trichoderma reesei. Biotechnology Letters, 1979, 1(1): 41-46.
doi: 10.1007/BF01395789
[9]   Seiboth B, Herold S, Kubicek C P. Metabolic engineering of inducer formation for cellulase and hemicellulase gene expression in Trichoderma reesei. Sub-Cellular Biochemistry, 2012, 64: 367-390.
[10]   Häkkinen M, Arvas M, Oja M, et al. re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microbial Cell Factories, 2012, 11: 134.
doi: 10.1186/1475-2859-11-134 pmid: 23035824
[11]   Pang A P, Wang H Y, Luo Y S, et al. Dissecting cellular function and distribution of β-glucosidases in Trichoderma reesei. mBio, 2021, 12(3): e03671-e03620.
[12]   Zhou Q X, Xu J T, Kou Y B, et al. Differential involvement of β-glucosidases from Hypocrea jecorina in rapid induction of cellulase genes by cellulose and cellobiose. Eukaryotic Cell, 2012, 11(11): 1371-1381.
doi: 10.1128/EC.00170-12
[13]   Shida Y, Yamaguchi K, Nitta M, et al. The impact of a single-nucleotide mutation of bgl2 on cellulase induction in a Trichoderma reesei mutant. Biotechnology for Biofuels, 2015, 8: 230.
doi: 10.1186/s13068-015-0420-y
[14]   Fowler T, Brown R D Jr. The bgl1 gene encoding extracellular beta-glucosidase from Trichoderma reesei is required for rapid induction of the cellulase complex. Molecular Microbiology, 1992, 6(21): 3225-3235.
pmid: 1453960
[15]   Mach R L, Seiboth B, Myasnikov A, et al. The bgl1 gene of Trichoderma reesei QM 9414 encodes an extracellular, cellulose-inducible β-glucosidase involved in cellulase induction by sophorose. Molecular Microbiology, 1995, 16(4): 687-697.
pmid: 7476163
[16]   Zou G, Jiang Y P, Liu R, et al. The putative β-glucosidase BGL3I regulates cellulase induction in Trichoderma reesei. Biotechnology for Biofuels, 2018, 11: 314.
doi: 10.1186/s13068-018-1314-6
[17]   Li C C, Lin F M, Li Y Z, et al. A β-glucosidase hyper-production Trichoderma reesei mutant reveals a potential role of cel3D in cellulase production. Microbial Cell Factories, 2016, 15: 151.
doi: 10.1186/s12934-016-0550-3
[18]   Bischof R H, Ramoni J, Seiboth B. Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microbial Cell Factories, 2016, 15(1): 106.
doi: 10.1186/s12934-016-0507-6 pmid: 27287427
[19]   Karaffa L, Coulier L, Fekete E, et al. The intracellular galactoglycome in Trichoderma reesei during growth on lactose. Applied Microbiology and Biotechnology, 2013, 97(12): 5447-5456.
doi: 10.1007/s00253-012-4667-y
[20]   Ivanova C, Bååth J A, Seiboth B, et al. Systems analysis of lactose metabolism in Trichoderma reesei identifies a lactose permease that is essential for cellulase induction. PLoS One, 2013, 8(5): e62631.
doi: 10.1371/journal.pone.0062631
[21]   Xu J T, Zhao G L, Kou Y B, et al. Intracellular β-glucosidases CEL1a and CEL1b are essential for cellulase induction on lactose in Trichoderma reesei. Eukaryotic Cell, 2014, 13(8): 1001-1013.
doi: 10.1128/EC.00100-14
[22]   Seiboth B, Hartl L, Salovuori N, et al. Role of the bga1-encoded extracellular{beta}-galactosidase of Hypocrea jecorina in cellulase induction by lactose. Applied and Environmental Microbiology, 2005, 71(2): 851-857.
doi: 10.1128/AEM.71.2.851-857.2005
[23]   Fekete E, Seiboth B, Kubicek C P, et al. Lack of aldose 1-epimerase in Hypocrea jecorina (anamorph Trichoderma reesei):a key to cellulase gene expression on lactose. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(20): 7141-7146.
[24]   Hartl L, Kubicek C P, Seiboth B. Induction of the gal pathway and cellulase genes involves no transcriptional inducer function of the galactokinase in Hypocrea jecorina. Journal of Biological Chemistry, 2007, 282(25): 18654-18659.
doi: 10.1074/jbc.M700955200
[25]   Zhang W X, Kou Y B, Xu J T, et al. Two major facilitator superfamily sugar transporters from Trichoderma reesei and their roles in induction of cellulase biosynthesis. Journal of Biological Chemistry, 2013, 288(46): 32861-32872.
doi: 10.1074/jbc.M113.505826
[26]   de Oliveira Porciuncula J, Furukawa T, Shida Y, et al. Identification of major facilitator transporters involved in cellulase production during lactose culture of Trichoderma reesei PC-3-7. Bioscience, Biotechnology, and Biochemistry, 2013, 77(5): 1014-1022.
doi: 10.1271/bbb.120992
[27]   Havukainen S, Valkonen M, Koivuranta K, et al. Studies on sugar transporter CRT 1 reveal new characteristics that are critical for cellulase induction in Trichoderma reesei. Biotechnology for Biofuels, 2020, 13: 158.
doi: 10.1186/s13068-020-01797-7 pmid: 32944074
[28]   Nogueira K M V, de Paula R G, Antoniêto A C C, et al. Characterization of a novel sugar transporter involved in sugarcane bagasse degradation in Trichoderma reesei. Biotechnology for Biofuels, 2018, 11: 84.
doi: 10.1186/s13068-018-1084-1
[29]   Sloothaak J, Tamayo-Ramos J A, Odoni D I, et al. Identification and functional characterization of novel xylose transporters from the cell factories Aspergillus niger and Trichoderma reesei. Biotechnology for Biofuels, 2016, 9: 148.
doi: 10.1186/s13068-016-0564-4 pmid: 27446237
[30]   de Paula R G, Antoniêto A C C, Ribeiro L F C, et al. New genomic approaches to enhance biomass degradation by the industrial fungus Trichoderma reesei. International Journal of Genomics, 2018, 2018: 1974151.
[31]   Derntl C, Gudynaite-Savitch L, Calixte S, et al. Mutation of the xylanase regulator 1 causes a glucose blind hydrolase expressing phenotype in industrially used Trichoderma strains. Biotechnology for Biofuels, 2013, 6(1): 62.
doi: 10.1186/1754-6834-6-62
[32]   dos Santos Castro L, de Paula R G, Antoniêto A C C, et al. Understanding the role of the master regulator XYR1 in Trichoderma reesei by global transcriptional analysis. Frontiers in Microbiology, 2016, 7: 175.
[33]   辛琪, 徐金涛, 汪天虹, 等. 丝状真菌红褐肉座菌(Hypocrea jecorina)纤维素酶基因的转录调控研究进展. 微生物学报, 2010, 50(11): 1431-1437.
pmid: 21268886
[33]   Xin Q, Xu J T, Wang T H, et al. Transcriptional regulation of cellulases and hemicellulases gene in Hypocrea jecorina: a review. Acta Microbiologica Sinica, 2010, 50(11): 1431-1437.
pmid: 21268886
[34]   Stricker A R, Steiger M G, Mach R L. Xyr1 receives the lactose induction signal and regulates lactose metabolism in Hypocrea jecorina. FEBS Letters, 2007, 581(21): 3915-3920.
pmid: 17662982
[35]   Portnoy T, Margeot A, Seidl-Seiboth V, et al. Differential regulation of the cellulase transcription factors XYR1, ACE2, and ACE 1 in Trichoderma reesei strains producing high and low levels of cellulase. Eukaryotic Cell, 2011, 10(2): 262-271.
doi: 10.1128/EC.00208-10 pmid: 21169417
[36]   Lichius A, Seidl-Seiboth V, Seiboth B, et al. Nucleo-cytoplasmic shuttling dynamics of the transcriptional regulators XYR1 and CRE1 under conditions of cellulase and xylanase gene expression in Trichoderma reesei. Molecular Microbiology, 2014, 94(5): 1162-1178.
doi: 10.1111/mmi.12824
[37]   Schmoll M, Kubicek C P. Regulation of Trichoderma cellulase formation: lessons in molecular biology from an industrial fungus: a review. Acta Microbiologica et Immunologica Hungarica, 2003, 50(2-3): 125-145.
pmid: 12894484
[38]   Stricker A R, Trefflinger P, Aro N, et al. Role of Ace2 (activator of cellulases 2) within the xyn2 transcriptosome of Hypocrea jecorina. Fungal Genetics and Biology, 2008, 45(4): 436-445.
pmid: 17920314
[39]   Wang L, Lv X X, Cao Y L, et al. A novel transcriptional regulator RXE 1 modulates the essential transactivator XYR1 and cellulase gene expression in Trichoderma reesei. Applied Microbiology and Biotechnology, 2019, 103(11): 4511-4523.
doi: 10.1007/s00253-019-09739-6 pmid: 30982107
[40]   Aro N, Saloheimo A, Ilmén M, et al. ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. Journal of Biological Chemistry, 2001, 276(26): 24309-24314.
doi: 10.1074/jbc.M003624200 pmid: 11304525
[41]   Martinez D, Berka R M, Henrissat B, et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 2008, 26(5): 553-560.
doi: 10.1038/nbt1403 pmid: 18454138
[42]   Häkkinen M, Valkonen M J, Westerholm-Parvinen A, et al. Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. Biotechnology for Biofuels, 2014, 7(1): 14.
doi: 10.1186/1754-6834-7-14 pmid: 24472375
[43]   Chen Y M, Lin A B, Liu P, et al. Trichoderma reesei ACE4, a novel transcriptional activator involved in the regulation of cellulase genes during growth on cellulose. Applied and Environmental Microbiology, 2021, 87(15): e0059321.
[44]   Zhang J J, Chen Y M, Wu C, et al. The transcription factor ACE 3 controls cellulase activities and lactose metabolism via two additional regulators in the fungus Trichoderma reesei. Journal of Biological Chemistry, 2019, 294(48): 18435-18450.
doi: 10.1074/jbc.RA119.008497
[45]   Portnoy T, Margeot A, Linke R T, et al. The CRE1 carbon catabolite repressor of the fungus Trichoderma reesei: a master regulator of carbon assimilation. BMC Genomics, 2011, 12: 269.
doi: 10.1186/1471-2164-12-269 pmid: 21619626
[46]   Sun J P, Glass N L. Identification of the CRE-1 cellulolytic regulon in Neurospora crassa. PLoS One, 2011, 6(9): e25654.
doi: 10.1371/journal.pone.0025654
[47]   Antoniêto A C C, dos Santos Castro L, Silva-Rocha R, et al. Defining the genome-wide role of CRE1 during carbon catabolite repression in Trichoderma reesei using RNA-Seq analysis. Fungal Genetics and Biology, 2014, 73: 93-103.
doi: 10.1016/j.fgb.2014.10.009 pmid: 25459535
[48]   Antoniêto A C C, de Paula R G, Castro L, et al. Trichoderma reesei CRE1-mediated carbon catabolite repression in response to sophorose through RNA sequencing analysis. Current Genomics, 2016, 17(2): 119-131.
doi: 10.2174/1389202917666151116212901 pmid: 27226768
[49]   陈小玲, 陈东, 张穗生, 等. 瑞氏木霉碳源阻遏相关基因Cre1的分子改造. 基因组学与应用生物学, 2014, 33(2): 288-292.
[49]   Chen X L, Chen D, Zhang S S, et al. Molecular modification of Cre1 gene mediating carbon catabolite repression in Trichoderma reesei. Genomics and Applied Biology, 2014, 33(2): 288-292.
[50]   Kubicek C P, Mikus M, Schuster A, et al. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnology for Biofuels, 2009, 2: 19.
doi: 10.1186/1754-6834-2-19
[51]   Seidl V, Gamauf C, Druzhinina I S, et al. The Hypocrea jecorina (Trichoderma reesei) hypercellulolytic mutant RUT C30 lacks a 85 kb (29 gene-encoding) region of the wild-type genome. BMC Genomics, 2008, 9: 327.
doi: 10.1186/1471-2164-9-327
[52]   Denton J A, Kelly J M. Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity. BMC Biotechnology, 2011, 11: 103.
doi: 10.1186/1472-6750-11-103 pmid: 22070776
[53]   刘雯莉. cre4基因在里氏木霉中对纤维素酶表达的调控研究. 深圳: 深圳大学, 2016.
[53]   Liu W L. Studies on regulation of cre4 gene on cellulase expression in Trichoderma reesei. Shenzhen: Shenzhen University, 2016.
[54]   Aro N, Ilmén M, Saloheimo A, et al. ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Applied and Environmental Microbiology, 2003, 69(1): 56-65.
doi: 10.1128/AEM.69.1.56-65.2003
[55]   何敏超, 许敬亮, 袁振宏, 等. 纤维素酶基因表达研究进展. 林产化学与工业, 2014, 34(5): 169-174.
[55]   He M C, Xu J L, Yuan Z H, et al. Research progress in the expression of cellulase. Chemistry and Industry of Forest Products, 2014, 34(5): 169-174.
[56]   Xiong Y, Sun J P, Glass N L. VIB1, a link between glucose signaling and carbon catabolite repression, is essential for plant cell wall degradation by Neurospora crassa. PLoS Genetics, 2014, 10(8): e1004500.
[57]   Ivanova C, Ramoni J, Aouam T, et al. Genome sequencing and transcriptome analysis of Trichoderma reesei QM9978 strain reveals a distal chromosome translocation to be responsible for loss of vib 1 expression and loss of cellulase induction. Biotechnology for Biofuels, 2017, 10: 209.
doi: 10.1186/s13068-017-0897-7
[58]   Zhang F, Zhao X Q, Bai F W. Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. Bioresource Technology, 2018, 247: 676-683.
doi: S0960-8524(17)31691-7 pmid: 30060399
[59]   Chen L, Zou G, Wang J Z, et al. Characterization of the Ca2+-responsive signaling pathway in regulating the expression and secretion of cellulases in Trichoderma reesei Rut-C30. Molecular Microbiology, 2016, 100(3): 560-575.
doi: 10.1111/mmi.13334
[60]   Seiboth B, Karimi R A, Phatale P A, et al. The putative protein methyltransferase LAE 1 controls cellulase gene expression in Trichoderma reesei. Molecular Microbiology, 2012, 84(6): 1150-1164.
doi: 10.1111/j.1365-2958.2012.08083.x
[61]   Antonieto A C C, Nogueira K M V, de Paula R G, et al. A novel Cys2His 2 zinc finger homolog of AZF1 modulates holocellulase expression in Trichoderma reesei. mSystems, 2019, 4(4): e00161-e00119.
[62]   Wang L, Yang R F, Cao Y L, et al. CLP1, a novel plant homeo domain protein, participates in regulating cellulase gene expression in the filamentous fungus Trichoderma reesei. Frontiers in Microbiology, 2019, 10: 1700.
doi: 10.3389/fmicb.2019.01700 pmid: 31447796
[63]   Schuster A, Kubicek C P, Schmoll M. Dehydrogenase GRD1 represents a novel component of the cellulase regulon in Trichoderma reesei (Hypocrea jecorina). Applied and Environmental Microbiology, 2011, 77(13): 4553-4563.
doi: 10.1128/AEM.00513-11 pmid: 21602376
[64]   Cao Y L, Zheng F L, Wang L, et al. Rce1, a novel transcriptional repressor, regulates cellulase gene expression by antagonizing the transactivator Xyr 1 in Trichoderma reesei. Molecular Microbiology, 2017, 105(1): 65-83.
doi: 10.1111/mmi.13685
[65]   Meng Q S, Zhang F, Liu C G, et al. Identification of a novel repressor encoded by the putative gene ctf1 for cellulase biosynthesis in Trichoderma reesei through artificial zinc finger engineering. Biotechnology and Bioengineering, 2020, 117(6): 1747-1760.
doi: 10.1002/bit.27321
[66]   Ries L, Belshaw N J, Ilmén M, et al. The role of CRE 1 in nucleosome positioning within the cbh1 promoter and coding regions of Trichoderma reesei. Applied Microbiology and Biotechnology, 2014, 98(2): 749-762.
doi: 10.1007/s00253-013-5354-3 pmid: 24241958
[67]   Mello-de-Sousa T M, Rassinger A, Pucher M E, et al. The impact of chromatin remodelling on cellulase expression in Trichoderma reesei. BMC Genomics, 2015, 16(1): 588.
doi: 10.1186/s12864-015-1807-7
[68]   Zeilinger S, Schmoll M, Pail M, et al. Nucleosome transactions on the Hypocrea jecorina (Trichoderma reesei) cellulase promoter cbh 2 associated with cellulase induction. Molecular Genetics and Genomics: MGG, 2003, 270(1): 46-55.
doi: 10.1007/s00438-003-0895-2
[69]   Xin Q, Gong Y J, Lv X X, et al. Trichoderma reesei histone acetyltransferase Gcn 5 regulates fungal growth, conidiation, and cellulase gene expression. Current Microbiology, 2013, 67(5): 580-589.
doi: 10.1007/s00284-013-0396-4 pmid: 23748966
[70]   王方忠, 蒋艺, 刘奎美, 等. 丝状真菌中纤维素酶与半纤维素酶的合成调控. 生物加工过程, 2014, 12(1): 72-79.
[70]   Wang F Z, Jiang Y, Liu K M, et al. Regulation of cellulase and hemicellulase production in filamentous fungi. Chinese Journal of Bioprocess Engineering, 2014, 12(1): 72-79.
[71]   Nguyen E V, Imanishi S Y, Haapaniemi P, et al. Quantitative site-specific phosphoproteomics of Trichoderma reesei signaling pathways upon induction of hydrolytic enzyme production. Journal of Proteome Research, 2016, 15(2): 457-467.
doi: 10.1021/acs.jproteome.5b00796
[72]   Zhang J W, Zhang Y M, Zhong Y H, et al. Ras GTPases modulate morphogenesis, sporulation and cellulase gene expression in the cellulolytic fungus Trichoderma reesei. PLoS One, 2012, 7(11): e48786.
[73]   张纪伟. 瑞氏木霉Ras信号途径对形态建成和纤维素酶合成的作用研究及酶系改良. 济南: 山东大学, 2013.
[73]   Zhang J W. Functional analysis of ras signaling for morphogenesis and cellulase synthesis in Trichoderma reesei and cellulase optimization. Jinan: Shandong University, 2013.
[74]   Cziferszky A, Mach R L, Kubicek C P. Phosphorylation positively regulates DNA binding of the carbon catabolite repressor Cre1 of Hypocrea jecorina(Trichoderma reesei). Journal of Biological Chemistry, 2002, 277(17): 14688-14694.
doi: 10.1074/jbc.M200744200 pmid: 11850429
[75]   Schuster A, Tisch D, Seidl-Seiboth V, et al. Roles of protein kinase A and adenylate cyclase in light-modulated cellulase regulation in Trichoderma reesei. Applied and Environmental Microbiology, 2012, 78(7): 2168-2178.
doi: 10.1128/AEM.06959-11 pmid: 22286997
[76]   Wang M Y, Zhang M L, Li L, et al. Role of Trichoderma reesei mitogen-activated protein kinases (MAPKs) in cellulase formation. Biotechnology for Biofuels, 2017, 10: 99.
doi: 10.1186/s13068-017-0789-x
[77]   Wang M Y, Zhao Q S, Yang J H, et al. A mitogen-activated protein kinase Tmk3 participates in high osmolarity resistance, cell wall integrity maintenance and cellulase production regulation in Trichoderma reesei. PLoS One, 2013, 8(8): e72189.
doi: 10.1371/journal.pone.0072189
[78]   Schmoll M, Franchi L, Kubicek C P. Envoy, a PAS/LOV domain protein of Hypocrea jecorina (Anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryotic Cell, 2005, 4(12): 1998-2007.
pmid: 16339718
[79]   Castellanos F, Schmoll M, Martínez P, et al. Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei. Fungal Genetics and Biology, 2010, 47(5): 468-476.
doi: 10.1016/j.fgb.2010.02.001 pmid: 20144726
[80]   Tisch D, Kubicek C P, Schmoll M. The phosducin-like protein PhLP1 impacts regulation of glycoside hydrolases and light response in Trichoderma reesei. BMC Genomics, 2011, 12: 613.
doi: 10.1186/1471-2164-12-613
[81]   Schmoll M, Schuster A, Silva R D N, et al. The G-alpha protein GNA 3 of Hypocrea jecorina (Anamorph Trichoderma reesei) regulates cellulase gene expression in the presence of light. Eukaryotic Cell, 2009, 8(3): 410-420.
doi: 10.1128/EC.00256-08 pmid: 19136572
[82]   Seibel C, Gremel G, do Nascimento Silva R, et al. Light-dependent roles of the G-protein α subunit GNA 1 of Hypocrea jecorina (anamorph Trichoderma reesei). BMC Biology, 2009, 7: 58.
doi: 10.1186/1741-7007-7-58
[83]   Tisch D, Kubicek C P, Schmoll M. New insights into the mechanism of light modulated signaling by heterotrimeric G-proteins: envoy acts on gna1 and gna3 and adjusts cAMP levels in Trichoderma reesei (Hypocrea jecorina). Fungal Genetics and Biology, 2011, 48(6): 631-640.
doi: 10.1016/j.fgb.2010.12.009
[84]   Schmoll M. Light, stress, sex and carbon: the photoreceptor ENVOY as a central checkpoint in the physiology of Trichoderma reesei. Fungal Biology, 2018, 122(6): 479-486.
doi: S1878-6146(17)30144-7 pmid: 29801792
[85]   Beier S, Hinterdobler W, Bazafkan H, et al. CLR1 and CLR2 are light dependent regulators of xylanase and pectinase genes in Trichoderma reesei. Fungal Genetics and Biology, 2020, 136: 103315.
[86]   Li C, Yang Z H, He Can Zhang R, et al. Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis. Journal of Biotechnology, 2013, 168(4): 470-477.
doi: 10.1016/j.jbiotec.2013.10.003
[87]   Chen Y M, Shen Y L, Wang W, et al. Mn2+ modulates the expression of cellulase genes in Trichoderma reesei Rut-C 30 via calcium signaling. Biotechnology for Biofuels, 2018, 11: 54.
doi: 10.1186/s13068-018-1055-6
[1] LIU Ming-zhu,ZHANG Liang,GUO Fang,LI Chun,FENG Xu-dong. Construction of Yeast Surface Display System and Application in Cellulose Degrading[J]. China Biotechnology, 2022, 42(5): 91-99.
[2] HOU Si-jia,ZHANG Qian-qian,SUN Zhen-mei,CHEN Jing,MENG Jian-qiao,LIANG Dan,WU Rong-ling,GUO Yun-qian. Research Progress of WIND Transcription Factor Responsing to Wound Stress and Organ Growth in Plants[J]. China Biotechnology, 2022, 42(4): 85-92.
[3] LIN Yan-mei,LUO Xiang,LI Rui-jie,QIN Xiu-lin,FENG Jia-xun. Probing the Role of N-glycosylation on the Catalytic Domain in the Activity and Secretion of Fungal Cellobiohydrolase[J]. China Biotechnology, 2021, 41(4): 18-29.
[4] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[5] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[6] XU Xiao, CHENG Chi, YUAN Kai, XUE Chuang. Research Progress of Cellulase Production in Trichoderma reesei[J]. China Biotechnology, 2021, 41(1): 52-61.
[7] Wen-ran YUE,Jun-yan YUE,Xiu-juan ZHANG,Qi YANG,Xiao-dong HAN,Rui-gang WANG,Guo-jing LI. The CiNAC1 from Caragana intermedia Promotes Transgenic Arabidopsis Leaf Senescence[J]. China Biotechnology, 2018, 38(4): 24-29.
[8] Ying-ying ZHANG,Bin TANG,Guo-cheng DU. Study on the Intracellular Glycosyl Donor and Structural Function of Cellobiose Synthase from Rhizopus stolonifer[J]. China Biotechnology, 2018, 38(4): 38-45.
[9] Jia-wei XU,Hua HE,Jing ZHANG,Chu-chao LEI,Hong CHENG,Yong-zhen HUANG. Research Progress on the Structure and Function of Transcription Factor KLF8 Gene[J]. China Biotechnology, 2018, 38(4): 90-95.
[10] Si-ming JIAO,Gong CHENG,Yu-chen ZHANG,Cui FENG,Li-shi REN,Jian-jun LI,Yu-guang DU. Expression of Chitinase from Trichoderma reesei and Analysis the Composition and Structure of its Hydrolysates[J]. China Biotechnology, 2018, 38(10): 30-37.
[11] LI Xiao-fei, CAO Ying-xiu, SONG Hao. CRISPR/Cas9 System:A Recent Progress[J]. China Biotechnology, 2017, 37(10): 86-92.
[12] SUN Ze-xu, ZHAO Chen, LIAO Jun-yi, WANG Qi, XU Wei, CHEN Cheng, HUANG Wei. Suppression of Runx2 Potentiates BMP2-induced Chondrogenic Differentiation[J]. China Biotechnology, 2016, 36(4): 57-62.
[13] MENG Qing-ting, TANG Bin. The Role of Carbon Metabolism Repressor CRE in the Regulation of Cellulase Produced by Rhizopus stolonifer[J]. China Biotechnology, 2016, 36(3): 31-37.
[14] LIANG Xiang nan, ZHANG Kun, ZOU Shao lan, WANG Jian jun, MA Yuan yuan, HONG Jie fang. Construction and Preliminary Evaluation of Saccharomyces cerevisiae Strains Co-expressing Three Types of Cellulase Via Cocktail δ-integration[J]. China Biotechnology, 2016, 36(11): 54-62.
[15] MA Li, WU Hao, WANG Bin-bin, QIAO Jian-jun, ZHU Hong-ji. Progress in Functions and Regulatory Mechanisms of the Transcription Factor Rex[J]. China Biotechnology, 2016, 36(10): 94-100.