Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (10): 125-132    DOI: 10.13523/j.cb.2208001
    
Progress and Prospect of Global Antiviral Drugs
Rui-jun WU,Wei WEI,Xiao-dong SANG,Li-qi WANG,Xin ZHANG,Yi AO*(),Ling FAN*()
China National Center for Biotechnology Development, Beijing 100039, China
Download: HTML   PDF(1540KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Viruses are one of the main pathogens that endanger human health. The infectious diseases caused by virus infection and transmission seriously threaten human health. At present, viral diseases with high morbidity and low cure rate such as AIDS and viral hepatitis are still spreading around the whole world, and respiratory viruses such as influenza virus and corona virus are constantly mutating. Since 2019, the global epidemic caused by SARS-CoV-2 has brought severe challenges to the world, and there are still great uncertainties in the future course of the epidemic. Therefore, the development of safe and effective antiviral drugs has become an important means to deal with viral diseases. On the basis of summarizing the overall status of global antiviral drug research and development, this paper intends to analyze the progress of new drug research in key areas such as anti-HIV, hepatitis virus and SARS-CoV-2, and put forward suggestions to provide guidance and reference for the development of more efficient antiviral drugs in the future.



Key wordsAntiviral drug      Human immunodeficiency virus (HIV)      Hepatitis virus      SARS-CoV-2     
Received: 02 August 2022      Published: 04 November 2022
ZTFLH:  Q819  
Corresponding Authors: Yi AO,Ling FAN     E-mail: aoyi@cncbd.org.cn;fanling@cncbd.org.cn
Cite this article:

Rui-jun WU,Wei WEI,Xiao-dong SANG,Li-qi WANG,Xin ZHANG,Yi AO,Ling FAN. Progress and Prospect of Global Antiviral Drugs. China Biotechnology, 2022, 42(10): 125-132.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2208001     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I10/125

Fig.1 The complete replication cycle of virus-infected host cells and the antiviral drugs of corresponding mechanism
Fig.2 The number and proportion of drugs approved by FDA for different viral indications
Fig.3 The number of ongoing clinical trials of drugs under development for different viral indications (relevant data was retrieved from Yaozhi database on September 19, 2022)
[1]   Pellett P E, Mitra S, Holland T C. Basics of virology. Handbook of Clinical Neurology, 2014, 123: 45-66.
[2]   张洋, 袁敏, 许吉, 等. 基于专利的全球抗病毒药物研发情况分析. 中国新药杂志, 2021, 30(6): 489-495.
[2]   Zhang Y, Yuan M, Xu J, et al. Study on global R & D of antiviral drugs based on patent analysis. Chinese Journal of New Drugs, 2021, 30(6): 489-495.
[3]   Draz M S, Shafiee H. Applications of gold nanoparticles in virus detection. Theranostics, 2018, 8(7): 1985-2017.
doi: 10.7150/thno.23856 pmid: 29556369
[4]   Walker P J, Siddell S G, Lefkowitz E J, et al. Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2019). Archives of Virology, 2019, 164(9): 2417-2429.
doi: 10.1007/s00705-019-04306-w pmid: 31187277
[5]   张如, 宋珊珊, 宋兴超, 等. 抗病毒药物研究进展. 特产研究, 2019, 41(4): 119-123.
[5]   Zhang R, Song S S, Song X C, et al. Research progress on the antiviral drugs. Special Wild Economic Animal and Plant Research, 2019, 41(4): 119-123.
[6]   霍帅东, 张伟芳. 抗病毒纳米药物的研究进展. 厦门大学学报(自然科学版), 2020, 59(3): 325-333.
[6]   Huo S D, Zhang W F. Research progress in antiviral nanomedicines. Journal of Xiamen University (Natural Science), 2020, 59(3): 325-333.
[7]   Kausar S, Said Khan F, Ishaq Mujeeb Ur Rehman M, et al. A review: mechanism of action of antiviral drugs. International Journal of Immunopathology and Pharmacology, 2021, 35: 20587384211002621.
[8]   陈大明, 毛开云, 杨露. 抗病毒药物的发展态势分析. 生物产业技术, 2014(6): 80-86.
[8]   Chen D M, Mao K Y, Yang L. Analysis of the development trend of antiviral drugs. Biotechnology & Business, 2014(6): 80-86.
[9]   Tompa D R, Immanuel A, Srikanth S, et al. Trends and strategies to combat viral infections: a review on FDA approved antiviral drugs. International Journal of Biological Macromolecules, 2021, 172: 524-541.
doi: 10.1016/j.ijbiomac.2021.01.076 pmid: 33454328
[10]   UNAIDS. Fact sheet: World AIDS day 2021. [2021-07-14]. https://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf.
[11]   Rambaut A, Posada D, Crandall K A, et al. The causes and consequences of HIV evolution. Nature Reviews Genetics, 2004, 5(1): 52-61.
pmid: 14708016
[12]   刘帅凤, 彭振仁, 沈智勇. 艾滋病抗病毒药物及其治疗策略的研究进展. 应用预防医学, 2016, 22(3): 282-285.
[12]   Liu S F, Peng Z R, Shen Z Y. Research progress of antiviral drugs and treatment strategies. Journal of Applied Preventive Medicine, 2016, 22(3): 282-285.
[13]   Simon V, Ho D D, Abdool Karim Q. HIV/AIDS epidemiology, pathogenesis, prevention, and treatment. The Lancet, 2006, 368(9534): 489-504.
doi: 10.1016/S0140-6736(06)69157-5
[14]   Henderson L J, Reoma L B, Kovacs J A, et al. Advances toward curing HIV-1 infection in tissue reservoirs. Journal of Virology, 2020, 94(3): e00375-e00319.
[15]   FDA. FDA Approves first extended-release, injectable drug regimen for adults living with HIV. [2021-1-21]. https://www.fda.gov/news-events/press-announcements/fda-approves-first-extended-release-injectable-drug-regimen-adults-living-hiv.
[16]   Segal-Maurer S, DeJesus E, Stellbrink H J, et al. Capsid inhibition with lenacapavir in multidrug-resistant HIV-1 infection. The New England Journal of Medicine, 2022, 386(19): 1793-1803.
doi: 10.1056/NEJMoa2115542 pmid: 35544387
[17]   Chang X L, Webb G M, Wu H L, et al. Antibody-based CCR5 blockade protects Macaques from mucosal SHIV transmission. Nature Communications, 2021, 12: 3343.
doi: 10.1038/s41467-021-23697-6 pmid: 34099693
[18]   Petz L D, Redei I, Bryson Y, et al. Hematopoietic cell transplantation with cord blood for cure of HIV infections. Biology of Blood and Marrow Transplantation, 2013, 19(3): 393-397.
doi: 10.1016/j.bbmt.2012.10.017 pmid: 23089564
[19]   贺珍凤, 臧林泉. 抗乙型肝炎病毒药物研究进展与发展趋势. 医药导报, 2021, 40(11): 1568-1571.
[19]   He Z F, Zang L Q. Research progress and development trend of anti-hepatitis B virus drugs. Herald of Medicine, 2021, 40(11): 1568-1571.
[20]   Teng Y, Xu Z C, Zhao K T, et al. Novel function of SART 1 in HNF4α transcriptional regulation contributes to its antiviral role during HBV infection. Journal of Hepatology, 2021, 75(5): 1072-1082.
doi: 10.1016/j.jhep.2021.06.038 pmid: 34242702
[21]   Nicolini L A, Orsi A, Tatarelli P, et al. A global view to HBV chronic infection: evolving strategies for diagnosis, treatment and prevention in immunocompetent individuals. International Journal of Environmental Research and Public Health, 2019, 16(18): E3307.
[22]   Hepatitis B Foundation. Drug Watch. [2022-4-20]. https://www.hepb.org/treatment-and- management/drug-watch/.
[23]   Wedemeyer H, Schöneweis K, Bogomolov P O, et al. GS-13-Final results of a multicenter, open-label phase 2 clinical trial (MYR203) to assess safety and efficacy of myrcludex B in cwith PEG-interferon Alpha 2a in patients with chronic HBV/HDV co-infection. Journal of Hepatology, 2019, 70(1): e81.
doi: 10.1016/S0618-8278(19)30141-0
[24]   宗克丽, 于芳, 何宇鹏, 等. 乙型肝炎病毒核衣壳蛋白装配抑制剂: 甲磺酸莫非赛定. 临床药物治疗杂志, 2021, 19(2): 11-16.
[24]   Zong K L, Yu F, He Y P, et al. Hepatitis B virus nucleocapsid protein assembly inhibitors: Morphothiadin Methanesulfonate. Clinical Medication Journal, 2021, 19(2): 11-16.
[25]   Zhang M Y, Zhang J M, Tan Y W, et al. Efficacy and safety of GLS4/ritonavir combined with entecavir in HBeAg-positive patients with chronic hepatitis B: interim results from phase 2b, multi-center study. Journal of Hepatology, 2020, 73: S878-S880.
[26]   Gupta S V, Fanget M C, MacLauchlin C, et al. Clinical and preclinical single-dose pharmacokinetics of VIR-2218, an RNAi therapeutic targeting HBV infection. Drugs in R&D, 2021, 21(4): 455-465.
[27]   Gane E, Yuen M F, Kakuda T N, et al. JNJ-73763989 pharmacokinetics and safety: liver-targeted siRNAs against hepatitis B virus, in Japanese and non-Japanese healthy adults, and combined with JNJ-56136379 and a nucleos(t)ide analogue in patients with chronic hepatitis B. Antiviral Therapy, 2022, 27(3): 13596535221093856.
[28]   Bazinet M, Pantea V, Placinta G, et al. Safety and efficacy of 48 weeks REP 2139 or REP 2165, tenofovir disoproxil, and pegylated interferon Alfa-2a in patients with chronic HBV infection naive to nucleos(t)ide therapy. Gastroenterology, 2020, 158(8): 2180-2194.
doi: S0016-5085(20)30320-6 pmid: 32147484
[29]   Choo Q L, Kuo G, Weiner A J, et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science, 1989, 244(4902): 359-362.
pmid: 2523562
[30]   田月, 赵志刚. 治疗丙肝药物研发进展综述. 药品评价, 2016, 13(2): 44-46.
[30]   Tian Y, Zhao Z G. Progress in drug treatment of hepatitis C. Drug Evaluation, 2016, 13(2): 44-46.
[31]   Szymanek A, Krzysztof S. HCV drug resistance and DAA agents. Przeglad Epidemiologiczny, 2013, 67(3): 403-406, 513-515.
pmid: 24340550
[32]   Zeuzem S, Andreone P, Pol S, et al. Telaprevir for retreatment of HCV infection. The New England Journal of Medicine, 2011, 364(25): 2417-2428.
doi: 10.1056/NEJMoa1013086 pmid: 21696308
[33]   McQuaid T, Savini C, Seyedkazemi S. Sofosbuvir, a significant paradigm change in HCV treatment. Journal of Clinical and Translational Hepatology, 2015, 3(1): 27-35.
doi: 10.14218/JCTH.2014.00041 pmid: 26357632
[34]   Bourlière M, Bronowicki J P, de Ledinghen V, et al. Ledipasvir-sofosbuvir with or without ribavirin to treat patients with HCV genotype 1 infection and cirrhosis non-responsive to previous protease-inhibitor therapy: a randomised, double-blind, phase 2 trial (SIRIUS). The Lancet Infectious Diseases, 2015, 15(4): 397-404.
doi: 10.1016/S1473-3099(15)70050-2
[35]   Mir F, Kahveci A S, Ibdah J A, et al. Sofosbuvir/velpatasvir regimen promises an effective pan-genotypic hepatitis C virus cure. Drug Design, Development and Therapy, 2017, 11: 497-502.
doi: 10.2147/DDDT.S130945 pmid: 28260862
[36]   徐孟秋, 童亚玲, 黄建荣. 以拉维达韦为基础的抗病毒方案治疗慢性丙型肝炎的临床疗效及安全性. 中华临床感染病杂志, 2021, 14(1): 75-80.
[36]   Xu M S, Tong Y L, Huang J R. Clinical efficacy and safety of ravidavir-based antiretroviral regimen in treatment of patients with chronic hepatitis C. Chinese Journal of Clinical Infectious Diseases, 2021, 14(1): 75-80.
[37]   李治非, 武瑞君, 胡瑛瑛, 等. 治疗新冠肺炎小分子药物研发国际现状和思考. 国际药学研究杂志, 2020, 47(7): 522-528.
[37]   Li Z F, Wu R J, Hu Y Y, et al. Current status and thinking of small-molecule drug discovery for the treatment of COVID-19. Journal of International Pharmaceutical Research, 2020, 47(7): 522-528.
[38]   WHO. WHO Coronavirus (COVID-19) Dashboard. [2022-07-22]. https://covid19.who.int/.
[39]   FDA. Coronavirus (COVID-19) Drugs. [2022-05-11]. https://www.fda.gov/drugs/emergency-preparedness-drugs/coronavirus-covid-19-drugs.
[40]   Takashita E, Yamayoshi S, Simon V, et al. Efficacy of antibodies and antiviral drugs against Omicron BA.2.12.1, BA.4, and BA.5 subvariants. The New England Journal of Medicine, 2022, 387(5): 468-470.
doi: 10.1056/NEJMc2207519
[41]   Wang R K, Zhang Q, Zhang R, et al. SARS-CoV-2 Omicron variants reduce antibody neutralization and acquire usage of mouse ACE2. Frontiers in Immunology, 2022, 13: 854952.
[42]   真实生物科技. 阿兹夫定片治疗新冠肺炎适应证注册III期临床试验主要疗效指标达到预期. [2022-07-15]. https://mp.weixin.qq.com/s/LXaq4p_v0unYoFN0GaRfkw.
[42]   GenuineBiotech. The main efficacy indicators of the phase III clinical trial of Azivudine tablets in the treatment of COVID-19 have reached the expectations. [2022-07-15]. https://mp.weixin.qq.com/s/LXaq4p_v0unYoFN0GaRfkw.
[43]   Shionogi. 新型コロナウイルス感染症(COVID-19)治療薬S-217622の国内における製造販売承認申請について. [2022-07-25]. https://www.shionogi.com/jp/ja/news/2022/2/220225.html.
[43]   Shionogi. Application for production and sales authorization in Japan of COVID-19 drug S-217622. [2022-07-25]. https://www.shionogi.com/jp/ja/news/2022/2/220225.html.
[1] WANG Tao-xue,LIU Qian,QI Hao. SARS-CoV-2 SNV Genotyping Test Technology[J]. China Biotechnology, 2022, 42(8): 63-73.
[2] YU Lu,HU Xuan,ZHANG Xiao-juan,NIU An-na,ZHANG Xiao-peng. Surface Display of Functional RBD of SARS-CoV-2 in Pichia pastoris[J]. China Biotechnology, 2022, 42(6): 30-38.
[3] QIAN Man-yun,WANG Ji-wei,LI Hao-ze,WANG Rui-hua,LIU Yun,LI Ya-feng. Study on Protective Immunity Induced by Recombinant SARS-CoV-2 S1 and S Protein Vaccine[J]. China Biotechnology, 2022, 42(5): 106-116.
[4] YANG Yi,ZHANG Qing-yun,MEI Kun-rong. Progress and Current Situation of SARS-CoV-2 Subunit Vaccine Development[J]. China Biotechnology, 2022, 42(5): 124-138.
[5] YUN Tao,GONG Yue,GU Peng,XU Bing-bing,LI Jin,ZHAO Xi-chen. Present Situation and Prospect of International S&T Cooperation between China and Countries Participating in the “Belt and Road” Initiative to Combat COVID-19[J]. China Biotechnology, 2021, 41(7): 110-121.
[6] CHEN Chen,HU Jin-chao,CAO Shan-shan,MEN Dong. The Development of Antigen Testing for SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 119-128.
[7] SHI Rui,YAN Jing-hua. Research Progress of Neutralizing Antibody Drugs against SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 129-135.
[8] ZHANG Sai,WANG Gang,LIU Zhong-ming,LI Hui-jun,WANG Da-ming,QIAN Chun-gen. Development and Performance Evaluation of a Rapid Antigen Test for SARS-CoV-2[J]. China Biotechnology, 2021, 41(5): 27-34.
[9] FAN Yue-lei,WANG Yue,WANG Heng-zhe,LI Dan-dan,MAO Kai-yun. Research Progress of in Vitro Diagnostic Technologies for SARS-CoV-2[J]. China Biotechnology, 2021, 41(2/3): 150-161.
[10] WU Rui-jun,LI Zhi-fei,ZHANG Xin,PU Run,AO Yi,SUN Yan-rong. Development and Prospect of Antibody Drugs for SARS-CoV-2[J]. China Biotechnology, 2020, 40(5): 1-6.
[11] XIE Hua-ling,LV Lu-cheng,YANG Yan-ping. Patent Analysis of Global Coronavirus Vaccine[J]. China Biotechnology, 2020, 40(1-2): 57-64.
[12] PAN Tong-tong,CHEN Yong-ping. Research Progress of Key Techniques for Severe/Critical Type of Novel Coronavirus Pneumonia[J]. China Biotechnology, 2020, 40(1-2): 78-83.
[13] LIN Fu-yu,LIU Jin-yi,CHENG Yong-qing. Progress of Interferon α1b Research and Clinical Use Against SARS-CoV-2[J]. China Biotechnology, 2020, 40(12): 1-7.
[14] LIAO Xiao-yan,CHEN Li-li. The Progress in the Development of COVID-19 Vaccine[J]. China Biotechnology, 2020, 40(12): 8-17.
[15] . Clone and expression of Loop1 and Loop2 gene of hexon of infectious canine hepatitis virus[J]. China Biotechnology, 2007, 27(4): 29-33.