Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (5): 106-116    DOI: 10.13523/j.cb.2203003
    
Study on Protective Immunity Induced by Recombinant SARS-CoV-2 S1 and S Protein Vaccine
QIAN Man-yun1,WANG Ji-wei2,LI Hao-ze2,WANG Rui-hua2,LIU Yun2,LI Ya-feng3,4,5,**()
1 Department of Biochemistry and Molecular Biology,College of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China
2 Nanjing Vazyme Biotechnology Co.Ltd., Nanjing 210000, China
3 The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), Taiyuan 030012, China
4 Shanxi Key Laboratory of Nephrology, Taiyuan 030012, China
5 Institute of Microecology, Shanxi Medical University, Taiyuan 030001, China
Download: HTML   PDF(4266KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To evaluate the immune protection of recombinant SARS-CoV-2 S1 and S protein vaccine. Methods: Recombinant SARS-CoV-2 S1 or S protein combined with aluminum hydroxide adjuvant was inoculated at different doses of 0.1 μg, 1 μg, 5 μg and 10 μg per mouse for 6-8 weeks. Serum IgG antibody titers were detected by enzyme linked immunosorbent assay (ELISA) after second immunization. The serum neutralizing antibody titers of the immunized mice against pseudotype SARS-CoV-2-Fluc WT, B.1.1.7, P.1, B.1.617.2, B.1.621, 501Y.V2-1 strains were compared by pseudovirus neutralization test. The cellular immune levels of sera were detected by enzyme-linked immunospot assay (ELISpot).Results: Both SARS-CoV-2 S and S1 proteins could induce strong IgG antibody levels in mouse model. The sera of mice immunized with S1 protein showed obvious neutralization activity against SARS-CoV-2-Fluc WT, B.1.1.7 and P.1. The sera of mice immunized with the recombinant S protein also showed obvious neutralization activity against SARS-CoV-2-Fluc B.1.617.2 in addition to SARS-CoV-2-Fluc WT, B.1.1.7 and P.1. The serum of mice immunized with two kinds of proteins had the strongest neutralizing effect on SARS-CoV-2-Fluc WT. Mouse spleen cells immunized with S protein could significantly induce the production of interferon-γ (IFN-γ) and interleukin-4 (IL-4). The levels of IgG antibody, neutralizing antibody and cellular immunity induced by S protein were higher than those of S1.Conclusion: Recombinant SARS-CoV-2 S protein vaccine can induce protective immune responses.



Key wordsSARS-CoV-2      S protein      S1 protein      SARS-CoV-2 mutant      Protective immune responses     
Received: 02 March 2022      Published: 17 June 2022
ZTFLH:  Q819  
Corresponding Authors: Ya-feng LI     E-mail: muran2001@163.com
Cite this article:

QIAN Man-yun,WANG Ji-wei,LI Hao-ze,WANG Rui-hua,LIU Yun,LI Ya-feng. Study on Protective Immunity Induced by Recombinant SARS-CoV-2 S1 and S Protein Vaccine. China Biotechnology, 2022, 42(5): 106-116.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2203003     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I5/106

Fig.1 Plasmid map of SARS-CoV-2 S1 and S (a) Plasmid (pcDNA3.1-nCoV-S1B) map of SARS-CoV-2 S1 (b) Plasmid (pcDNA3.1-nCoV-SF4) map of SARS-CoV-2 S
Fig.2 A picture of the sodium dodecyl sulfate polyacrylamide gel electrophoresis from SARS-CoV-2 S1 and S protein (a) A picture of the sodium dodecyl sulfate polyacrylamide gel electrophoresis from SARS-CoV-2 S1 protein (b) A picture of the sodium dodecyl sulfate polyacrylamide gel electrophoresis from SARS-CoV-2 S protein
组别 名称 免疫剂量/μg 免疫体积/μL
免疫前组 空白对照组 0 0
SARS-CoV-2重组S1蛋白疫苗免疫组 S1-Al(OH)3-0.1 μg 0.1 50
S1-Al(OH)3-1 μg 1 50
S1-Al(OH)3-5 μg 5 50
S1-Al(OH)3-10 μg 10 50
SARS-CoV-2重组S蛋白疫苗免疫组 S-Al(OH)3-0.1 μg 0.1 50
S-Al(OH)3-1 μg 1 50
S-Al(OH)3-5 μg 5 50
S-Al(OH)3-10 μg 10 50
Table 1 Recombinant SARS-CoV-2 S1 and S protein vaccines
Fig.3 Serum IgG antibody titers in the immunized mice detected by ELISA (a) The absorbances of sera of the immunized mice with S1 or S protein (S1 dilution 1∶150, S dilution 1∶450) measured at 450 - 630 nm (b) Serum IgG titers of mice inoculated with S1 or S protein (n = 5. **, P<0.01; ***, P<0.001; ****, P<0.000 1)
Fig. 4 Effects of different doses of SARS-CoV-2 S1 and S proteins on neutralizing antibody production in immunized mice (a-f) Respectively represent the neutralizing activity titers of mouse serum immunized with different doses of S1 and S protein against SARS-CoV-2-Fluc WT, B.1.1.7, P.1, B.1.617.2, B.1.621, 501Y.V2-1 strains (n=5. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.000 1)
Fig.5 Serum neutralizing titers in the immunized mice against different pseudotype SARS-CoV-2 strains Serum neutralizing titers of the mice immunized with 5 μg of S1 protein and 10 μg of S protein against SARS-CoV-2-Fluc WT, B.1.1.7, P.1, B.1.617.2, B.1.621 and 501Y.V2-1 strains (n=5; *, P<0.05, **, P< 0.01, ***, P< 0.001; ****, P< 0.000 1)
Fig.6 Cellular immune response in the spleen cells of the immunized mice induced by the recombinant SARS-CoV-2 S1 and S proteins vaccine candidates (a),(b) The levels of IFN-γ, IL-4 induced by mouse specific spleen cells detected by ELISpot (n=5; *, P<0.05; **, P<0.01; ***, P< 0.001; ****, P< 0.000 1)
Table S1 Amino acid sequences of S1 and S proteins of SARS-CoV-2
[1]   Harrison A G, Lin T, Wang P H. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends in Immunology, 2020, 41(12): 1100-1115.
doi: 10.1016/j.it.2020.10.004 pmid: 33132005
[2]   陈一晖, 李武. 新冠肺炎(COVID-19)的临床症状、临床分类与诊断. 基因组学与应用生物学, 2020, 39(8): 3904-3907.
[2]   Chen Y H, Li W. The clinical symptoms, classification and diagnosis of COVID-19. Genomics and Applied Biology, 2020, 39(8): 3904-3907.
[3]   Fathizadeh H, Afshar S, Masoudi M R, et al. SARS-CoV-2 (COVID-19) vaccines structure, mechanisms and effectiveness: a review. International Journal of Biological Macromolecules, 2021, 188: 740-750.
doi: 10.1016/j.ijbiomac.2021.08.076 pmid: 34403674
[4]   Cai Y F, Zhang J, Xiao T S, et al. Distinct conformational states of SARS-CoV-2 spike protein. Science, 2020, 369(6511): 1586-1592.
doi: 10.1126/science.abd4251
[5]   Zhou P, Yang X L, Wang X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579 (7798): 270-273.
doi: 10.1038/s41586-020-2012-7
[6]   Wrapp D, Wang N S, Corbett K S, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483): 1260-1263.
doi: 10.1126/science.abb2507
[7]   Nie J, Li Q, Wu J, et al. Quantification of SARS-CoV-2 neutralizing antibody by a pseudotyped virus-based assay. Nature Protocols, 2020, 15 (11): 3699-3715.
doi: 10.1038/s41596-020-0394-5
[8]   Slota M, Lim J B, Dang Y S, et al. ELISpot for measuring human immune responses to vaccines. Expert Review of Vaccines, 2011, 10(3): 299-306.
doi: 10.1586/erv.10.169
[9]   王玉珀, 任丽萍, 张明霞. 新型冠状病毒IgM和IgG抗体检测结果分析及抗体数值变化监测. 中国药物与临床, 2021, 21(6): 1021-1022.
[9]   Wang Y P, Ren L P, Zhang M X. Analysis of novel coronavirus IgM and IgG antibody results and monitoring of changes in antibody values. Chinese Remedies & Clinics, 2021, 21(6): 1021-1022.
[10]   Dan J M, Mateus J, Kato Y, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science, 2021, 371(6529): eabf4063.
doi: 10.1126/science.abf4063
[11]   Logunov D Y, Dolzhikova I V, Zubkova O V, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet (London, England), 2020, 396(10255): 887-897.
doi: 10.1016/S0140-6736(20)31866-3
[12]   潘婷, 郭彦, 邱洪杰, 等. 中东呼吸综合征冠状病毒S1蛋白在昆虫细胞中的重组表达及免疫效果评价. 生物技术通讯, 2015, 26(2): 199-202.
[12]   Pan T, Guo Y, Qiu H J, et al. Preparation and immunization assessment of recombinant MERS-CoV S 1 protein expressed by insect cells. Letters in Biotechnology, 2015, 26(2): 199-202.
[13]   Johnson B A, Xie X, Bailey A L, et al. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature, 2021, 591 (7849): 293-299.
doi: 10.1038/s41586-021-03237-4
[14]   Ramanathan M, Ferguson I D, Miao W L, et al. SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity. The Lancet Infectious Diseases, 2021, 21(8): 1070.
[15]   Tang J W, Tambyah P A, Hui D S. Emergence of a new SARS-CoV-2 variant in the UK. The Journal of Infection, 2021, 82(4): e27-e28.
[16]   Tortorici M A, Walls A C, Lang Y, et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nature Structural & Molecular Biology, 2019, 26 (6): 481-489.
doi: 10.1038/s41594-019-0233-y
[17]   Tegally H, Wilkinson E, Giovanetti M, et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv, 2020. DOI: 10.1101/2020.12.21.20248640.
doi: 10.1101/2020.12.21.20248640
[18]   Fratev F. N501Y and K417N mutations in the spike protein of SARS-CoV-2 alter the interactions with both hACE2 and human-derived antibody: a free energy of perturbation retrospective study. Journal of Chemical Information and Modeling, 2021, 61(12): 6079-6084.
doi: 10.1021/acs.jcim.1c01242 pmid: 34806876
[19]   Collier D A, de Marco A, Ferreira I A T M, et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature, 2021, 593 (7857): 136-141.
doi: 10.1038/s41586-021-03412-7
[20]   Wang P F, Casner R G, Nair M S, et al. Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host & Microbe, 2021, 29(5): 747-751.e4.
[21]   Dejnirattisai W, Zhou D M, Supasa P, et al. Antibody evasion by the P.1 strain of SARS-CoV-2. Cell, 2021, 184(11): 2939-2954.e9.
doi: 10.1016/j.cell.2021.03.055 pmid: 33852911
[22]   Hoffmann M, Arora P, Groβ R, et al. SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell, 2021, 184(9): 2384-2393.e12.
doi: 10.1016/j.cell.2021.03.036 pmid: 33794143
[23]   Peacock T P, Sheppard C M, Brown J C, et al. The SARS-CoV-2 variants associated with infections in India, B.1.617, show enhanced spike cleavage by furin. bioRxiv, 2021. DOI: 10.1101/2021.05.28.446163.
doi: 10.1101/2021.05.28.446163
[24]   Ferreira I, Datir R, Papa G, et al. SARS-CoV-2 B.1.617 emergence and sensitivity to vaccine-elicited antibodies. bioRxiv, 2021. DOI: 10.1101/2021.05.08.443253.
doi: 10.1101/2021.05.08.443253
[25]   Chatterjee D, Tauzin A, Laumaea A, et al. Antigenicity of the mu (B.1.621) and A.2.5 SARS-CoV-2 spikes. Viruses, 2022, 14(1): 144.
doi: 10.3390/v14010144
[26]   Li G, Fan Y H, Lai Y N, et al. Coronavirus infections and immune responses. Journal of Medical Virology, 2020, 92(4): 424-432.
doi: 10.1002/jmv.25685
[27]   de Wilde A H, Snijder E J, Kikkert M, et al. Host factors in coronavirus replication. Current Topics in Microbiology and Immunology, 2018, 419: 1-42.
[28]   张竞文, 胡欣, 金鹏飞. 新型冠状病毒引起的细胞因子风暴及其药物治疗. 中国药学杂志, 2020, 55(5): 333-336.
[28]   Zhang J W, Hu X, Jin P F. Cytokine storm induced by SARS-CoV-2 and the drug therapy. Chinese Pharmaceutical Journal, 2020, 55(5): 333-336.
[29]   Nir-Paz R, Abutbul A, Moses A E, et al. Ongoing epidemic of Mycoplasma pneumoniae infection in Jerusalem, Israel, 2010 to 2012. Eurosurveillance, 2012, 17(8): 20095.
[30]   Ju B, Zhang Q, Ge J, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 2020, 584 (7819): 115-119.
doi: 10.1038/s41586-020-2380-z
[31]   Chi X Y, Yan R H, Zhang J, et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science, 2020, 369(6504): 650-655.
doi: 10.1126/science.abc6952
[32]   Xia S, Zhu Y, Liu M, et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cellular & Molecular Immunology, 2020, 17 (7): 765-767.
[33]   Wang K, Chen W, Zhang Z, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduction and Targeted Therapy, 2020, 5: 283.
doi: 10.1038/s41392-020-00426-x pmid: 33277466
[1] YANG Yi,ZHANG Qing-yun,MEI Kun-rong. Progress and Current Situation of SARS-CoV-2 Subunit Vaccine Development[J]. China Biotechnology, 2022, 42(5): 124-138.
[2] YUN Tao,GONG Yue,GU Peng,XU Bing-bing,LI Jin,ZHAO Xi-chen. Present Situation and Prospect of International S&T Cooperation between China and Countries Participating in the “Belt and Road” Initiative to Combat COVID-19[J]. China Biotechnology, 2021, 41(7): 110-121.
[3] CHEN Chen,HU Jin-chao,CAO Shan-shan,MEN Dong. The Development of Antigen Testing for SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 119-128.
[4] SHI Rui,YAN Jing-hua. Research Progress of Neutralizing Antibody Drugs against SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 129-135.
[5] ZHANG Sai,WANG Gang,LIU Zhong-ming,LI Hui-jun,WANG Da-ming,QIAN Chun-gen. Development and Performance Evaluation of a Rapid Antigen Test for SARS-CoV-2[J]. China Biotechnology, 2021, 41(5): 27-34.
[6] FAN Yue-lei,WANG Yue,WANG Heng-zhe,LI Dan-dan,MAO Kai-yun. Research Progress of in Vitro Diagnostic Technologies for SARS-CoV-2[J]. China Biotechnology, 2021, 41(2/3): 150-161.
[7] WU Rui-jun,LI Zhi-fei,ZHANG Xin,PU Run,AO Yi,SUN Yan-rong. Development and Prospect of Antibody Drugs for SARS-CoV-2[J]. China Biotechnology, 2020, 40(5): 1-6.
[8] XIE Hua-ling,LV Lu-cheng,YANG Yan-ping. Patent Analysis of Global Coronavirus Vaccine[J]. China Biotechnology, 2020, 40(1-2): 57-64.
[9] PAN Tong-tong,CHEN Yong-ping. Research Progress of Key Techniques for Severe/Critical Type of Novel Coronavirus Pneumonia[J]. China Biotechnology, 2020, 40(1-2): 78-83.
[10] LIN Fu-yu,LIU Jin-yi,CHENG Yong-qing. Progress of Interferon α1b Research and Clinical Use Against SARS-CoV-2[J]. China Biotechnology, 2020, 40(12): 1-7.
[11] LIAO Xiao-yan,CHEN Li-li. The Progress in the Development of COVID-19 Vaccine[J]. China Biotechnology, 2020, 40(12): 8-17.
[12] WANG Yu-hai, ZHANG Hui-bin, YANG Hui-min, MENG Qing-qing, WANG Feng-huan. The Fermentation Advantage of Kluyveromyces lactis and Its Application in the Field of Food Enzyme[J]. China Biotechnology, 2013, 33(12): 121-126.
[13] LI You, ZHANG Yan, SU Hai-jia, LUO Jian, BAI Qian, MA Guang-hui, SU Zhi-guo. Purification of Recombinant Human Lactoferrin Expressed in A Cattle Mammary Bioreactor[J]. China Biotechnology, 2011, 31(8): 66-72.
[14] WU Yong-hong, ZHANG Cheng-gang. Current Progress on the HIV-1 TAT Protein Transduction Peptide[J]. China Biotechnology, 2010, 30(10): 66-73.
[15] . Current Progress on the HIV-1 TAT Protein Transduction Peptide[J]. China Biotechnology, 2010, 30(10): 0-0.