Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (12): 1-7    DOI: 10.13523/j.cb.2011032
    
Progress of Interferon α1b Research and Clinical Use Against SARS-CoV-2
LIN Fu-yu,LIU Jin-yi,CHENG Yong-qing()
Beijing Tri-Prime Gene Pharmaceutical Co., Ltd., Beijing 102600, China
Download: HTML   PDF(4100KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Interferon is the first line of innate defense against viruses infection. Interferon α1b is a major antiviral subtype of interferon family. SARS-CoV-2 have evolved several mechanisms to block interferon induction. Interferon α1b, has been approved for the antiviral clinical use for many years, showing strong in vitro antiviral activity against SARS-CoV-2. Preliminary clinical studies including type I interferon have showed critical positive efficiency on COVID-19 treatment and prevention. A clinical trial with a larger cohort of infected patients that are randomized to treatment with interferon-alpha or to a placebo is ongoing.



Key wordsSARS-CoV-2      COVID-19      Interferon α1b      Treatment      Prophylaxis     
Received: 17 November 2020      Published: 14 January 2021
ZTFLH:  Q819  
Corresponding Authors: Yong-qing CHENG     E-mail: ycheng@triprime.com
Cite this article:

LIN Fu-yu,LIU Jin-yi,CHENG Yong-qing. Progress of Interferon α1b Research and Clinical Use Against SARS-CoV-2. China Biotechnology, 2020, 40(12): 1-7.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2011032     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I12/1

Fig.1 In vitro SARS-CoV-2 inhibitory concentration of three interferon (a) Inhibitory effect of IFN-α1b on SARS-CoV-2 (b) Inhibitory effect of IFN-α2b on SARS-CoV-2 (c) Inhibitory effect of IFN-con on SARS-CoV-2. X-axis is IFN concentration used in study, Y-axis is SARS-CoV-2 virus inhibition rate.Dotted line represents 50% inhibition rate
Fig.2 Anti-SARS-CoV-2 activity of different subtype of IFN
[1]   Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020,395(10236):1569-1578.
doi: 10.1016/S0140-6736(20)31022-9 pmid: 32423584
[2]   Hernandez A V, Roman Y M, Pasupuleti V, et al. Hydroxychloroquine or chloroquine for treatment or prophylaxis of COVID-19: a living systematic review. Ann Intern Med, 2020,173(4):287-296.
doi: 10.7326/M20-2496 pmid: 32459529
[3]   Rusinova I, Forster S, Yu S, et al. INTERFEROME v2.0: an updated database of annotated interferon-regulated genes. Nucleic acids research, 2013,41(database issue):D1040-D1046.
doi: 10.1093/nar/gks1215 pmid: 23203888
[4]   Hawkins M J, Borden E C, Merritt J A, et al. Comparison of the biologic effects of two recombinant human interferons alpha (rA and rD) in humans. J Clin Oncol, 1984,2(3):221-226.
doi: 10.1200/JCO.1984.2.3.221 pmid: 6321691
[5]   Genin P, Vaccaro A, Cicas A. The role of differential expression of human interferon: a genes in antiviral immunity. Cytokine Growth Factor Rev, 2009,20(4):283-295.
doi: 10.1016/j.cytogfr.2009.07.005 pmid: 19651532
[6]   侯云德, 张智清, 杨新科, 等. 人白细胞干扰素基因的克隆化及其在大肠杆菌中的表达. 中国医学科学院学报, 1982,6:4-12.
[6]   Hou Y D, Zhang Z Q, Yang X K, et al. Cloning of human leukocyte interferon gene and its expression in E. coli. Acta Academiae Medicinae Sinicae, 1982,6:4-12.
[7]   侯云德. 干扰素的不同亚型与临床应用. 中国生物制品学杂志, 1993,6(4):145-148.
[7]   Hou Y D. Interferon subtype and clinical use. Chinese Journal of Biologicals, 1993,6(4):145-148.
[8]   黎孟枫, 金奇, 胡钢, 等. 一种α I型干扰素基因新变种的发现和鉴定. 中国科学(B辑), 1991,22(4):397-402.
[8]   Li M F, Jin Q, Hu G, et al. Discovery and identification of a new variant of interferon alpha I gene. Science in China (SeriesB), 1991,22(4):397-402.
[9]   Chu H, Chan J F, Wang Y, et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis, 2020,71(6):1400-1409.
doi: 10.1093/cid/ciaa410 pmid: 32270184
[10]   Wölfel R, Corman V M, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature, 2020,581(7809):465-469.
pmid: 32235945
[11]   Blanco-Melo D, Nilsson-Payant B E, Liu W C, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell, 2020,181(5):1036-1045.
doi: 10.1016/j.cell.2020.04.026 pmid: 32416070
[12]   Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and exacerbated inflammatory responses in severe COVID-19 patients. Science, 2020,369(6504):718-724.
doi: 10.1126/science.abc6027 pmid: 32661059
[13]   Trouillet-Assant S, Viel S, Gaymard A, et al. Type I IFN immunoprofiling in COVID-19 patients. J Allergy Clin Immunol, 2020, 146(1): 206-208.e2.
doi: 10.1016/j.jaci.2020.04.029 pmid: 32360285
[14]   Gordon D E, Jang G M, Bouhaddou M, et al. A SARS-CoV-2-human protein-protein interaction map reveals drug targets for drug-repurposing. Nature, 2020,583(7816):459-468.
doi: 10.1038/s41586-020-2286-9 pmid: 32353859
[15]   Konno Y, Kimura I, Uriu K, et al. SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is further increased by a naturally occurring elongation variant. Cell Rep, 2020,32(12):108185.
doi: 10.1016/j.celrep.2020.108185 pmid: 32941788
[16]   Thoms M, Buschauer R, Ameismeier M, et al. Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2. Science, 2020,369(6508):1249-1255.
doi: 10.1126/science.abc8665 pmid: 32680882
[17]   Mantlo E, Bukreyeva N, Maruyama J, et al. Potent antiviral activities of type I interferons to SARS-CoV-2 infection. Antiviral Res. 2020,179:104811.
doi: 10.1016/j.antiviral.2020.104811 pmid: 32360182
[18]   Jiang R M, Han B, Song M H, et al. Efficacy and safety of aerosol inhalation of recombinant human interferon α1b (IFNα1b) injection for noninfluenza viral pneumonia, a multicenter, randomized, double-blind, placebo-controlled trial. J Inflamm (Lond), 2020,17:19. DOI: 10.1186/s12950-020-00249-1.
doi: 10.1186/s12950-020-00249-1
[19]   Hung I F, Lung K C, Tso E Y, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet, 2020,395(10238):1695-1704.
doi: 10.1016/S0140-6736(20)31042-4 pmid: 32401715
[20]   Gemcioglu E, Davutoglu M, Ozdemir E E, et al. Are type 1 interferons treatment in multiple sclerosis as a potential therapy against COVID-19? Multi Scler Relat Dis, 2020,42:102196.
[21]   Zhou Q, Chen V, Shannon C P, et al. Interferon-α2b treatment for COVID-19. Front Immunol, 2020,11:1061.
doi: 10.3389/fimmu.2020.01061 pmid: 32574262
[22]   Shen K L, Yang Y H, Wang T Y, et al. Diagnosis, treatmnet, and prevention of 2019 novel cornavirus in children: experts’ consensus statement. World J Pediatr, 2020. DOI: 10.1007/s12519-020-00343-7.
doi: 10.1007/s12519-020-00343-7 pmid: 32578007
[23]   陈军, 刘丹萍, 刘莉, 等. 硫酸羟氯喹治疗冠状病毒病(COVID-19)普通型患者的初步研究. 浙江大学学报(医学版), 2020,49(2):215-219.
[23]   Chen J, Liu D P, Liu L, et al. A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19). J Zhejiang Univ (Med Sci), 2020,49(2):215-219.
[24]   Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ, 2020,368:m1091.
doi: 10.1136/bmj.m1091 pmid: 32217556
[25]   Mary A, Hénaut L, Schmit J L, et al. Therapeutic options for coronavirus disease 2019 (COVID-19) -modulation of type I interferon response as a promising strategy? Front Public Health, 2020,8:185.
doi: 10.3389/fpubh.2020.00185 pmid: 32574289
[26]   Yamagata Y, Yuasa Y, Yamamoto K, et al. Pharmacologic effect of recombinant human IFN-alpha, continuously released from a matrix prepared from a polyglycerol ester of fatty acids, on 2',5'-oligoadenylate synthetase activity in murine liver. J Interferon Cytokin Res, 2000,20(2):153-160.
[27]   Hou Y J, Okuda K, Edwards C E, et al. SARS-CoV-2 Reverse genetics reveals a variable infection gradient in the respiratory tract. Cell, 2020,182(2): 429-446.e14.
doi: 10.1016/j.cell.2020.05.038 pmid: 32526205
[28]   Meng Z J, Wang T Y, Chen L, et al. An experimental trial of recombinant human interferon alpha nasal drops to prevent coronavirus disease 2019 in medical staff in an epidemic area. medRxiv, 2020,7. DOI: doi.org/10.1101/2020.04.11.20061473.
doi: doi.org/10.1101/2020.04.11.20061473
[29]   Sallard E, Lescure F X, YazdanYazdanpanah F M, et al. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res, 2020,178:104791.
doi: 10.1016/j.antiviral.2020.104791 pmid: 32275914
[30]   程永庆, 刘金毅, 林福玉, 等. 重组人干扰素α1b与新型冠状病毒肺炎防治. 中国生物工程杂志, 2020,40(1-2):71-77.
[30]   Cheng Y Q, Liu J Y, Lin F Y, et al. Novel coronavirus control and the important contribution of interferon α1b. China Biotechnology, 2020,40(1-2):71-77.
[1] YUN Tao,GONG Yue,GU Peng,XU Bing-bing,LI Jin,ZHAO Xi-chen. Present Situation and Prospect of International S&T Cooperation between China and Countries Participating in the “Belt and Road” Initiative to Combat COVID-19[J]. China Biotechnology, 2021, 41(7): 110-121.
[2] CHEN Chen,HU Jin-chao,CAO Shan-shan,MEN Dong. The Development of Antigen Testing for SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 119-128.
[3] XU Ye-chun,LIU Hong,LI Jian-feng,SHEN Jing-shan,JIANG Hua-liang. Recent Progress in Drug Development against COVID-19[J]. China Biotechnology, 2021, 41(6): 111-118.
[4] SHI Rui,YAN Jing-hua. Research Progress of Neutralizing Antibody Drugs against SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 129-135.
[5] ZHANG Sai,WANG Gang,LIU Zhong-ming,LI Hui-jun,WANG Da-ming,QIAN Chun-gen. Development and Performance Evaluation of a Rapid Antigen Test for SARS-CoV-2[J]. China Biotechnology, 2021, 41(5): 27-34.
[6] FAN Yue-lei,WANG Yue,WANG Heng-zhe,LI Dan-dan,MAO Kai-yun. Research Progress of in Vitro Diagnostic Technologies for SARS-CoV-2[J]. China Biotechnology, 2021, 41(2/3): 150-161.
[7] FU Gui-e,LI Jin,GENG Pei-ran,SHEN Meng-qiu,ZHANG Jin-qian-nan,ZHAO Xi-chen. A Study on COVID-19 Prevention Force of Typical Cities in the Guangdong-Hong Kong-Macao Greater Bay Area Based on the Medical Perspective[J]. China Biotechnology, 2021, 41(12): 125-140.
[8] WU Rui-jun,LI Zhi-fei,ZHANG Xin,PU Run,AO Yi,SUN Yan-rong. Development and Prospect of Antibody Drugs for SARS-CoV-2[J]. China Biotechnology, 2020, 40(5): 1-6.
[9] XIE Hua-ling,LV Lu-cheng,YANG Yan-ping. Patent Analysis of Global Coronavirus Vaccine[J]. China Biotechnology, 2020, 40(1-2): 57-64.
[10] PAN Tong-tong,CHEN Yong-ping. Research Progress of Key Techniques for Severe/Critical Type of Novel Coronavirus Pneumonia[J]. China Biotechnology, 2020, 40(1-2): 78-83.
[11] ZHU Xiao-li,HUANG Cui,MA Li-li,ZHANG Chao,GONG Yue,ZHAO Wan-yu,ZHAO Xiu-fang,GUO Wen-jiao,PENG Hao,ZHANG Ji,LIANG Hui-gang. Research Advances of Novel Coronavirus Disease (COVID-19)[J]. China Biotechnology, 2020, 40(1-2): 38-50.
[12] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[13] LIAO Xiao-yan,CHEN Li-li. The Progress in the Development of COVID-19 Vaccine[J]. China Biotechnology, 2020, 40(12): 8-17.
[14] CHEN Li-jun,QU Jing-jing,XIANG Charlie. Therapeutic Potentials, Clinical Studies, and Application Prospects of Mesenchymal Stem Cells in 2019 Novel Coronavirus (COVID-19)[J]. China Biotechnology, 2020, 40(11): 43-55.
[15] MEI Ya-xian,WANG Yue,LUO Wen-xin. Application of Nano-antibody in the Prevention, Diagnosis and Treatment of Infectious Diseases[J]. China Biotechnology, 2020, 40(10): 24-34.