Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (10): 112-124    DOI: 10.13523/j.cb.2204013
    
The Layout of Crop Breeding Patents of Multinational Seed Companies and Its Enlightenment to China
Qian JIA,Huai-guo ZHENG,Jing-juan ZHAO**()
Institute of Data Science and Agricultural Economics, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
Download: HTML   PDF(1582KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new pattern of “two super companies, four strong companies, and differentiated development”has been formed basically in the global seed industry at present, and the seed industry giants are leading the research and development (R & D)of global crop breeding technology and industrial development. Study on technology R & D layout of multinational seed companies by in-depth analysis and mining of their crop breeding patents can be used as a reference for China to reasonably deploy crop breeding technology R & D and improve the layout and protection of intellectual property rights. The biological breeding R & D layout of the“two super and four strong”multinational seed companies was studied by analyzing their crop biological breeding patents applied for from 2015 to 2019 in Derwent Innovation (DI) database through text clustering method, and their focus of technology R & D was clarified by selecting key patents through measurement indicators and expert consultation. It was suggested that China should aim at the core field of biological breeding, strengthen the original innovation and integrated development of emerging cutting-edge technologies, enhance the exploration of new insect resistant genes and insect resistant mechanisms, intensify the collaborative protection and layout of intellectual property rights in the core technology chain and industrial chain of biological breeding, and improve the intellectual property protection level and intellectual property strategic awareness of globalization protection combinied with key layout.



Key wordsMultinational seed companies      Crop breeding      Patent layout      Text cluster     
Received: 07 April 2022      Published: 04 November 2022
ZTFLH:  Q819  
Corresponding Authors: Jing-juan ZHAO     E-mail: zjjaaa_zn@163.com
Cite this article:

Qian JIA,Huai-guo ZHENG,Jing-juan ZHAO. The Layout of Crop Breeding Patents of Multinational Seed Companies and Its Enlightenment to China. China Biotechnology, 2022, 42(10): 112-124.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2204013     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I10/112

Fig.1 Patents analysis method of “two super and four strong” multinational seed companies
Fig.2 Biological breeding patents layout of “two super and four strong” multinational seed companies
类别 基因功能
抗虫基因 编码Cry蛋白、Woods CRW蛋白、BCW蛋白、δ-内毒素、TIC系列及AXMI系列杀虫蛋白
抗病基因 抗玉米大斑病、大豆锈病、北方叶枯病、番茄灰霉病、小麦叶斑病、甜菜坏死性黄脉病毒、炭疽菌、疫霉菌、褐孔菌科真菌病原体
耐除草剂基因 编码原卟啉原氧化酶(PPO)、对羟基苯基丙酮酸双氧化酶(HPPD)、草甘膦-N-乙酰转移酶(GLYAT)、突变的纤维素合酶(CESA)、草甘膦耐受突变体5-烯醇丙酮酰莽草酸-3-磷酸合酶(EPSPS)、麦草畏脱羧酶
抗逆基因 编码谷氨酰胺合成酶(GS)、耐热rubisco活化酶、环状氨基酸1-氨基环丙烷-1-羧酸(ACC)脱氨酶、dtp6多肽、DN-DTP1多肽,调控乙烯产量(ETO1)、调节生长素应答、调节抑制隐性类病斑突变les23主要数量性状位点slm1
植物生长发育
相关基因
调节作物开花时间、雄性不育及育性恢复、种子活力、胚芽发育、作物器官尺寸和产量(ZmARGOS),编码与番茄软化相关的脱氧苏氨酸合酶(DHS)、编码组蛋白单泛素化1(HUB1)
优质高产基因 与多不饱和脂肪酸含量、小麦小穗数,芸薹属植物花数、荚数及千粒重、叶绿素-1,6-双磷酸酶(cpFBPase)、果胶乙酰酯酶(PAE1)、去饱和酶、生长调节蛋白(GRP)相关,能够提升作物产量、改善种子油脂成分、增加种籽中脂肪酸含量或蛋白质含量
Table 1 Functional trait genes explored by “two super and four strong” multinational seed companies
作物品种 研发内容
西瓜 与超坚硬果肉、液体保持型果肉、雄性不育表型相关的QTL和不同的多态性分子标记
大豆 与大豆胞囊线虫、蚜虫、亚洲大豆锈病、炭腐病抗旱性、疫霉根腐病、镰刀菌、疫霉菌抗性,抗倒伏性、氯化物耐受性、缺铁耐受性、开花时间性状相关的QTL及分子标记,用于品种鉴定的引物、探针、试剂盒和检测方法
玉米 与雄性生育力、耐寒性、穗重和产量性状,北方叶枯病、灰叶斑病、炭疽茎腐病、灰斑病抗性相关的遗传位点和分子标记
油菜 与纤维含量和种皮颜色相关的QTL精细图谱验证及基于SNP标记的鉴定方法,与油菜籽抗碎裂性、高油酸量、低亚麻酸量、除草剂抗性、细胞质雄性不育恢复、根肿病抗性、核盘菌属抗性等性状位点连锁的分子标记及使用方法
向日葵 与向日葵低棕榈酸含量表型、黄萎病抗性相关的分子标记,及品种鉴定探针、引物和方法
番茄 与番茄果实品质、黄叶卷曲病毒抗性相关的新基因及多态性分子标记
甜瓜 与甜瓜的南瓜黄色矮化失调病毒(CYSDV)抗性相关的新基因、多态性分子标记
甘蓝 与霜霉病抗性相关的新基因及多态性分子标记
辣椒 与疫霉、根结线虫抗性相关的新基因及多态性分子标记
黄瓜 与尖孢镰刀菌抗性相关的新基因及多态性分子标记
高粱 与细胞质雄性不育、炭疽病、开花时间相关的基因座和分子标记
小麦 与果聚糖/阿拉伯木聚糖含量相关的分子标记
Table 2 Molecular marker assisted breeding R & D of“two super and four strong”multinational breeding companies
跨国种企 专利数量/件
美国 加拿大 欧盟 中国 澳大利亚 巴西 印度 日本 阿根廷 墨西哥
科迪华 2 256 510 302 290 201 247 281 203 185 173
拜耳 2 454 146 169 127 148 113 113 94 151 107
巴斯夫 526 110 136 93 105 65 61 82 38 65
先正达 680 156 58 57 37 45 16 15 44 26
科沃施 63 37 79 37 15 27 6 7 19 4
利马格兰 107 5 49 4 9 3 1 2 2
Table 3 Main distribution regions of crop biological breeding patents of “two super and four strong” multinational breeding companies
IPC分类 释义 占比/%
美国 加拿大 欧盟 中国 澳大利亚 巴西
C12N15 突变或遗传工程 48.9 76.8 63.4 70.0 67.6 64.0
A01H5 特征在于其植物部分的被子植物 73.5 52.7 27.0 30.7 37.4 24.5
A01H1 基因型改良方法 35.6 52.9 18.8 16.2 15.7 17.0
A01H6 特征在于其植物学分类的被子植物 35.1 25.6 2.9 15.5 1.3 1.2
C07K14 具有多于20个氨基酸的肽;生长激素释放抑制因子 8.5 15.0 24.3 23.3 18.5 23.9
C12N9 酶和酶原及其制备、活化、抑制、分离、纯化方法 9.2 12.3 21.0 20.4 16.9 17.1
C12Q1 包含酶、核酸或微生物的检测方法 9.9 31.4 15.3 14.2 14.6 11.6
C12N5 未分化的细胞、组织及其培养或维持 4.6 50.7 7.2 14.4 11.9 10.0
A01N63 杀生物剂、驱虫剂、引诱剂或植物生长调节剂 3.0 7.2 7.0 8.2 6.3 8.3
C12N1 微生物及其组合物;繁殖、维持或保藏微生物或其组合物的
方法;制备或分离含有一种微生物的组合物的方法
1.1 4.2 5.5 10.0 6.5 5.2
Table 4 IPC distribution of crop biological breeding patents of “two super and four strong” multinational breeding companies in main distribution regions
布局地区 占比/%
转基因
技术
基因组编辑
技术
分子标记
技术
杂交育种
技术
美国 21.3 15.7 32.5 95.3
加拿大 6.1 9.6 6.2 4.7
欧盟 7.7 14.0 10.4 0.0
中国 6.8 6.2 4.6 0.0
澳大利亚 5.5 5.6 4.2 0.0
巴西 6.1 5.1 3.3 0.0
Table 5 Breeding technology hots distribution of crop biological breeding patents of “two super and four strong” multinational breeding companies in main distribution regions
序号 研发重点 重点专
利/件
平均
申请年
综合影响
力均值
所属企业
1 广谱杀虫活性抗虫基因的挖掘与鉴定 10 2015.5 9.79 科迪华(9件)、拜耳(1件)
2 植物介导的RNA干扰在抗虫品种研发中的应用 8 2015.0 15.12 科迪华(6件)、拜耳(2件)
3 CRISPR/Cas基因编辑系统构建 8 2015.9 28.16 科迪华(7件)、拜耳(1件)
4 分子标记开发及其在作物育种中的应用 7 2015.7 9.07 拜耳(3件)、科迪华(2件)、
利马格兰(1件)、先正达(1件)
5 耐除草剂转基因品种研发及鉴定 5 2014.6 15.29 巴斯夫(4件)、拜耳(1件)
6 复合性状基因座的位点特异性整合技术 3 2016.0 15.30 科迪华(2件)、科沃施(1件)
Table 6 R & D focus of “two super and four strong” multinational seed companies on crop biological breeding
[1]   郑怀国, 赵静娟, 秦晓婧, 等. 全球作物种业发展概况及对我国种业发展的战略思考. 中国工程科学, 2021, 23(4): 45-55.
[1]   Zheng H G, Zhao J J, Qin X J, et al. Overview of the global crop seed industry and strategic thinking on its development in China. Strategic Study of CAE, 2021, 23(4): 45-55.
[2]   任静, 邹婉侬, 宋敏. 跨国种业公司并购形成的国际种业竞争新格局变化趋势研究:以知识产权为例. 中国生物工程杂志, 2019, 39(7): 108-117.
[2]   Ren J, Zou W N, Song M. Research on the changing trend of the new pattern of international seed industry competition formed by the merger of multinational seed industry companies:take intellectual property as an example. China Biotechnology, 2019, 39(7): 108-117.
[3]   Alexey Y I, Dmitry Y K, Ioannis L. The seed market: globalisation, competition and intellectual property. Zakon, 2016(5): 49-66.
[4]   彭月, 孙养学, 王雅楠. 种子科技企业可持续竞争能力评价研究. 种子, 2018, 37(3): 63-67.
[4]   Peng Y, Sun Y X, Wang Y N. Evaluation research of sustainable competitive ability of seed science and technology enterprises. Seed, 2018, 37(3): 63-67.
[5]   柳苏芸, 郝晓燕. 全球种业巨头发展及其对我国的启示. 农村金融研究, 2021(5): 16-22.
[5]   Liu S Y, Hao X Y. The development of global seed leading enterprises and its enlightenment to China. Rural Finance Research, 2021(5): 16-22.
[6]   华树春. 跨国种业公司开拓中国市场策略研究. 农业经济问题, 2018, 39(4): 131-140.
[6]   Hua S C. Research on the strategy of excavating the Chinese market by multinational seed company. Issues in Agricultural Economy, 2018, 39(4): 131-140.
[7]   马兆红. 国外种子企业如何开发和维护高端蔬菜种子市场. 中国蔬菜, 2018(4): 19-20.
[7]   Ma Z H. How do foreign seed enterprises develop and maintain high-end vegetable seed market. China Vegetables, 2018(4): 19-20.
[8]   杨光, 朱增勇, 沈辰. 杜邦先锋公司种业发展战略. 世界农业, 2016(11): 188-191.
[8]   Yang G, Zhu Z Y, Shen C. Development strategy of DuPont pioneer seed industry. World Agriculture, 2016(11): 188-191.
[9]   陈瑞剑, 陈加齐, 祝自冬. 孟山都开拓阿根廷转基因大豆种子市场策略及启示. 世界农业, 2016(9): 211-216.
[9]   Chen R J, Chen J Q, Zhu Z D. Strategy and enlightenment of Monsanto in developing transgenic soybean seed market in argentina. World Agriculture, 2016(9): 211-216.
[10]   李向辉, 李艳茹, 金福兰. 美国孟山都公司在华专利布局战略分析. 江苏农业科学, 2015, 43(5): 462-468.
[10]   Li X H, Li Y R, Jin F L. Strategic analysis of Monsanto’s patent layout in China. Jiangsu Agricultural Sciences, 2015, 43(5): 462-468.
[11]   王立涛. 跨国种子企业知识产权战略分析. 世界农业, 2015(1): 131-135, 204.
[11]   Wang L T. IPR strategic analysis of multinational seed companies. World Agriculture, 2015(1): 131-135, 204.
[12]   宋敏, 刘娜, 任欣欣, 等. 跨国公司生物技术知识产权保护策略分析:以棉花转化体MON531为例. 中国生物工程杂志, 2014, 34(6): 110-116.
[12]   Song M, Liu N, Ren X X, et al. Analysis of intellectual property protection strategy of transnational biotechnology corporation:taking MON531 of cotton event for example. China Biotechnology, 2014, 34(6): 110-116.
[13]   杨武, 杨大飞. 基于专利数据的产业核心技术识别研究:以5G移动通信产业为例. 情报杂志, 2019, 38(3): 39-45, 52.
[13]   Yang W, Yang D F. Research on identification of industrial core technology based on patent data:taking the field of fifth generation mobile communication industry as an example. Journal of Intelligence, 2019, 38(3): 39-45, 52.
[14]   梁晋刚, 张旭冬, 毕研哲, 等. 转基因抗虫玉米发展现状与展望. 中国生物工程杂志, 2021, 41(6): 98-104.
[14]   Liang J G, Zhang X D, Bi Y Z, et al. Development status and prospect of genetically modified insect-resistant maize. China Biotechnology, 2021, 41(6): 98-104.
[15]   Barry J, Gerber R M, Liu L, et al. Insecticidal proteins from plants and methods for their use: America, US10227608B2. 2019-03-12[2022-03-09]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&_type=batch&sn=c25e8337-dadb-45c1-a911-a78d170799f0&patentId=c941feed-5463-40b2-9082-10570479e0c8&sort=sdesc&rows=100&page=1&source_type=search_result.
[16]   Barry J, Liu L, Lum A. Insecticidal proteins and methods for their use: Spain, ES2806473T3. 2021-02-17[2022-03-09]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&_type=batch&sn=c25e8337-dadb-45c1-a911-a78d170799f0&patentId=54ba1542-2544-4e8a-9d3c-0fc350db0274&sort=sdesc&rows=100&page=1&source_type=search_result.
[17]   Barry J K, Clark D W, English J J, et al. Insecticidal proteins and methods for their use: America, US10435706B2. 2019-10-08[2022-03-09]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=US10435706B2&_type=query&patentId=b73e43f0-71ef-441c-acae-31368c70440c&sort=sdesc&rows=100&page=1&source_type=search_result.
[18]   Barry J, Hayes K, Liu L, et al. Insecticidal proteins from plants: America, US10480007B2. 2019-11-19[2022-03-09]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=US10480007B2&_type=query&patentId=e003594c-54cf-49ff-a53e-7ab6aafc6da8&sort=sdesc&rows=100&page=1&source_type=search_result.
[19]   Liu L, Lum A, ONG Az S, et al. Insecticidal proteins from plants and methods for their use: World Intellectual Property Organization, WO2019178042A1. 2019-09-19[2022-03-09]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=WO2019178042A1&_type=query&patentId=82507d45-eeb0-4b4e-bc5d-24d6da52a107&sort=sdesc&rows=100&page=1&source_type=search_result.
[20]   Diehn S, English J, Liu L, et al. Insecticidal proteins and methods for their use[P]: America, US10667524B2. 2020-06-02[2022-03-09].
[21]   Abad A R, Hou Z L, Liu L, et al. Novel insecticidal proteins and methods of use. America, US20160376607A1. 2016-12-29 [2022-03-09]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=US20160376607A1&_type=query&patentId=d1febcb1-839b-461e-919f-a0177104a2f8&sort=sdesc&rows=100&page=1&source_type=search_result.
[22]   Baum J A, Salvador S A, Wang J L, et al. Chimeric insecticidal proteins toxic or inhibitory to Lepidopteran pests: Amercia, US10233217B2. 2019-03-19[2022-03-09]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=US10233217B2&_type=query&patentId=5c7b8f7a-85f3-42ff-9359-67cc53599186&sort=sdesc&rows=100&page=1&source_type=search_result.
[23]   高沥文, 陈世国, 张裕, 等. 基于RNA干扰的生物农药的发展现状与展望. 中国生物防治学报, 2022, 38(3): 700-715.
[23]   Gao L W, Chen S G, Zhang Y, et al. The development of biological pesticides based on RNA interference. Chinese Journal of Biological Control, 2022, 38(3): 700-715.
[24]   Narva K E, Worden S E, Frey M L, et al. Nucleic acid molecules that confer resistance to coleopteran pests: America, US10435687B2. 2019-10-08[2022-03-15]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=US10435687B2&_type=query&patentId=1ac0a898-8f44-43bf-967e-471d32ab7d75&sort=sdesc&rows=100&page=1&source_type=search_result.
[25]   Siegfried B D, Narva K E, Arora K, et al. Parental rnai suppression of kruppel gene to control coleopteran pests:America, US20160208253A1. 2016-07-21[2022-03-15]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=US20160208253A1&_type=query&patentId=3ac96d63-ac78-42d1-9b2a-d5b70bc02455&sort=sdesc&rows=100&page=1&source_type=search_result.
[26]   Narva K, Li H R, Rangasamy M, et al. Copi coatomer delta subunit nucleic acid molecules that confer resistance to coleopteran and hemipteran pests: World Intellectual Property Organization, WO2016060914A1. 2016-04-21[2022-03-15]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&_type=batch&sn=7efc97e8-e5f1-4827-a958-eab7452b50f4&patentId=24525bb3-e852-4a72-b5f4-bfd98d9e72f9&sort=sdesc&rows=100&page=1&source_type=search_result.
[27]   Narva K, Li H R, Geng C X, et al. Copi coatomer gamma subunit nucleic acid molecules that confer resistance to coleopteran and hemipteran pests: World Intellectual Property Organization, WO2016060911A1. 2016-04-21[2022-03-15]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&_type=batch&sn=7efc97e8-e5f1-4827-a958-eab7452b50f4&patentId=a5eb7d59-e06b-4ecf-8cbb-e4bc09d05c20&sort=sdesc&rows=100&page=1&source_type=search_result.
[28]   Narva K, Li H R, Geng C X, et al. Copi coatomer alpha subunit nucleic acid molecules that confer resistance to coleopteran and hemipteran pests: World Intellectual Property Organization, WO2016060912A3. 2016-06-09[2022-03-15]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=WO2016060912A3&_type=query&patentId=b195fc82-c652-4fec-8ae2-13c4b3340bb2&sort=sdesc&rows=100&page=1&source_type=search_result.
[29]   Narva K E, Arora K, Worden S E, et al. Sec23 nucleic acid molecules that confer resistance to coleopteran and hemipteran pests:America, US20150322455A1. 2015-11-12[2022-03-15]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=US20150322455A1&_type=query&patentId=351c3bdf-7cf4-4b69-9436-21d4ea9cfe96&sort=sdesc&rows=100&page=1&source_type=search_result.
[30]   Beattie J L, Crawford M J, Eads B D, et al. Compositions and methods for controlling Leptinotarsa: America, US9850496B2. 2017-12-26[2022-03-15]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&_type=batch&sn=2ab3e775-e0c6-430e-b9bb-687892a14642&patentId=f8400e04-768e-4fb4-a9ff-6d07ec8c2d16&sort=sdesc&rows=100&page=1&source_type=search_result.
[31]   Beattie J L, Crawford M J, Eads B D, et al. Compositions and methods for controlling Leptinotarsa: America, US9856495B2. 2018-01-02[2022-03-15]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=US9856495B2&_type=query&patentId=f6db7b30-bdc5-4ea9-ae78-c9c3bce09ca7&sort=sdesc&rows=100&page=1&source_type=search_result.
[32]   李树磊, 郑红艳, 王磊. 基因编辑技术在作物育种中的应用与展望. 生物技术通报, 2020, 36(11): 209-221.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0328
[32]   Li S L, Zheng H Y, Wang L. Application and prospect of gene editing technology in crop breeding. Biotechnology Bulletin, 2020, 36(11): 209-221.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0328
[33]   毛金燕, 翟惠, 王洁, 等. CRISPR/Cas技术及其作用机理. 分子植物育种, 2022, 20(7): 2310-2319.
[33]   Mao J Y, Zhai H, Wang J, et al. CRISPR/Cas technology and its action mechanisms. Molecular Plant Breeding, 2022, 20(7): 2310-2319.
[34]   曾秀英, 侯学文. CRISPR/Cas9基因组编辑技术在植物基因功能研究及植物改良中的应用. 植物生理学报, 2015, 51(9): 1351-1358.
[34]   Zeng X Y, Hou X W. Application of CRISPR/Cas9 genome editing technology in functional genomics and improvement of plants. Plant Physiology Journal, 2015, 51(9): 1351-1358.
[35]   Hou Z L, Young J K, Gasiunas G, et al. Novel cas9 orthologs: America, US20190264232A1. 2019-08-29[2022-03-22]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=US20190264232A1&_type=query&patentId=1680fa87-1fde-4b1a-8b8b-d63e51f01416&sort=sdesc&rows=100&page=1&source_type=search_result。
[36]   May A P, Donohoue P D. CRISPR hybrid DNA/RNA polynucleotides and methods of use: America, US9650617B2. 2017-05-16[2022-03-22]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=US9650617B2&_type=query&patentId=65637306-b8ff-4132-8f9a-84e8d44b564f&sort=sdesc&rows=100&page=1&source_type=search_result.
[37]   Cigan A, Patten P A, Young J K. Genome modification using guide polynucleotide/cas endonuclease systems and methods of use: America, US20160201072A1. 2016-07-14[2022-03-22]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=US20160201072A1&_type=query&patentId=a572642d-ef6d-41a9-8e1e-d2c1e06465b1&sort=sdesc&rows=100&page=1&source_type=search_result.
[38]   Cigan A M, Gasiunas G, Karvelis T. Guide rna/cas endonuclease systems: World Intellectual Property Organization, WO2016186953A1. 2016-07-14[2022-03-22]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=WO2016186953A1&_type=query&patentId=01728bf7-a354-49e1-84d5-c8c873d9d6e5&sort=sdesc&rows=100&page=1&source_type=search_result.
[39]   Frisch R L, Fan X C, Hong S P, et al. Peptide-mediated delivery of rna-guided endonuclease into cells: World Intellectual Property Organization, WO2016073433A1. 2016-05-12[2022-03-22]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=WO2016073433A1&_type=query&patentId=cb02565d-3dcc-4f6d-bfaa-39b1dfe8b694&sort=sdesc&rows=100&page=1&source_type=search_result.
[40]   Davis S B, Dellai J, Jung M T, et al. Methods of identifying and selecting maize plants with resistance to anthracnose stalk rot: America, US20160355840A1. 2016-12-08[2022-03-22]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=US20160355840A1&_type=query&patentId=9e2a4fef-a74b-4930-a511-8db9c3e8513a&sort=sdesc&rows=100&page=1&source_type=search_result.
[41]   Susana GA, Eleni B, Chan E K, et al. Melon plants with improved disease tolerance: America, US10098296B2. 2018-10-16[2022-03-22]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=US10098296B2&_type=query&patentId=08ce8bc0-d3c7-4c49-ba41-a222c63d5445&sort=sdesc&rows=100&page=1&source_type=search_result.
[42]   Brugmans B W, Meeuwsen J, Nooyen C. Compositions and methods for Peronospora resistance in spinach: America, US10927386B2. 2021-02-23[2022-03-22]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=US10927386B2&_type=query&patentId=612239fa-76c6-4703-8232-1149866de547&sort=sdesc&rows=100&page=1&source_type=search_result.
[43]   Weber A L, Ersoz E S, Bensen R J, et al. Genetic regions & genes associated with increased yield in plants: World Intellectual Property Organization, WO2017106274A1. 2017-06-22 [2022-03-22]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=WO2017106274A1&_type=query&patentId=18ec27f3-e403-4a87-a075-81e24f06c4cf&sort=sdesc&rows=100&page=1&source_type=search_result.
[44]   国际农业生物技术应用服务组织. 2019年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2021, 41(1): 114-119.
[44]   International Service for the Acquisition of Agri-biotech Applications. Global status of commercialized biotech/GM crops in 2019. China Biotechnology, 2021, 41(1): 114-119.
[45]   Poree F, Heinrichs V, Lange G, et al. HPPD variants and methods of use: America, US10793872B2. 2020-10-06[2022-03-22]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=US10793872B2&_type=query&patentId=01526776-89b5-4349-9729-9b76f8e9c92e&sort=sdesc&rows=100&page=1&source_type=search_result.
[46]   Aponte R, Tresch S, Witschel M, et al. Plants having increased tolerance to herbicides: America, US10968462B2. 2021-04-06[2022-03-22]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=US10968462B2&_type=query&patentId=613e3795-67a1-45cc-b9f3-0f5e005257ba&sort=sdesc&rows=100&page=1&source_type=search_result.
[47]   Cigan A M, Gao H R, Liu Z B, et al. Generation of site-specific-integration sites for complex trait loci in corn and soybean, and methods of use: America, US20180230476A1. 2021-04-06[2022-03-22]. https://analytics.zhihuiya.com/patent-view/abst?limit=100&q=US20180230476A1&_type=query&patentId=c1283678-9aec-404f-86e4-adaf9e7c0101&sort=sdesc&rows=100&page=1&source_type=search_result.
[48]   宋秀芳, 魏雪梅, 郑丽丽, 等. 基因编辑的技术分析与思考. 中国科学院院刊, 2020, 35(12): 1510-1524.
[48]   Song X F, Wei X M, Zheng L L, et al. Analysis and review on gene editing. Bulletin of Chinese Academy of Sciences, 2020, 35(12): 1510-1524.
[49]   陈云伟, 陶诚, 周海晨, 等. 基因编辑技术研究进展与挑战. 世界科技研究与发展, 2021, 43(1): 8-23.
[49]   Chen Y W, Tao C, Zhou H C, et al. Progress and challenges of gene editing. World Sci-Tech R & D, 2021, 43(1): 8-23.
[1] LI Dong-qiao,LV Lu-cheng,YANG Yan-ping. The Research Status and Development Trend of Global Human Coronavirus Antibody Field[J]. China Biotechnology, 2020, 40(1-2): 65-70.
[2] Jing REN,Wan-nong ZOU,Min SONG. Research on the Changing Trend of the New Pattern of International Seed Industry Competition Formed by the Merger of Multinational Seed Industry Companies——Take Intellectual Property as an Example[J]. China Biotechnology, 2019, 39(7): 108-117.
[3] Ping ZHAO,Bo ZHANG,Xue-zhao WANG. Patent Situation Analysis in Agricultural Biotechnology Field[J]. China Biotechnology, 2018, 38(8): 100-107.