Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (5): 27-34    DOI: 10.13523/j.cb.2102025
    
Development and Performance Evaluation of a Rapid Antigen Test for SARS-CoV-2
ZHANG Sai1,WANG Gang1,LIU Zhong-ming2,LI Hui-jun3,WANG Da-ming4,QIAN Chun-gen5,**()
1 Shenzhen YHLO Biotech Co., Ltd., Shenzhen 518116, China
2 General Hospital of Southern Theater Command, Guangzhou 510010, China
3 Tongji Hospital affiliated to Huazhong University of Science and Technology, Wuhan 430030, China
4 Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
5 College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Download: HTML   PDF(14688KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To establish a colloidal gold technique assay for the rapid detection of antigen against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and to evaluate its clinical performance. Methods: The colloidal gold was prepared by trisodium citrate reduction. The monoclonal antibody of mouse anti-SARS-CoV-2 nucleocapsid protein (NP) and dinitrophenol-bovine serum albumin (DNP-BSA) were labeled with colloidal gold nanoparticles. The monoclonal antibody of mouse anti-nucleocapsid protein and rabbit anti DNP polyclonal antibody were coated on the nitrocellulose membrane as detection line and quality control line to prepare immunofluorescence test strip. The performance of the limit of detection, cross-reactivity, accelerated stability, sensitivity and specificity of clinical diagnosis were evaluated. Results: The limit of detection for heat inactivated SARS-CoV-2 was 2.0×102 TCID50/mL. There were no cross reaction with high concentration samples or cultured virus of 16 common pathogens. The kit was stable after 8 weeks accelerated at 50℃. Nasopharyngeal swab samples of clinical and healthy people were tested, the sensitivity was 96.67% (29/30), the specificity was 99.23% (129/130), the total coincidence rate was 98.75% (158/160), and the Kappa consistency test had a Kappa value of 0.959 0 (P<0.05). Conclusion: The SARS-CoV-2 antigen detection reagent (colloidal gold method) has the advantages of high sensitivity and specificity, fast detection speed, portable operation, no need for equipment and naked eye observation, which can be used as a supplementary method for the existing SARS-CoV-2 nucleic acid detection method.



Key wordsSARS-CoV-2      Antigen      Colloidal gold      Immunochromatography      Performance evaluation     
Received: 22 February 2021      Published: 01 June 2021
ZTFLH:  Q816  
Corresponding Authors: Chun-gen QIAN     E-mail: chungen_qian@hust.edu.cn
Cite this article:

ZHANG Sai,WANG Gang,LIU Zhong-ming,LI Hui-jun,WANG Da-ming,QIAN Chun-gen. Development and Performance Evaluation of a Rapid Antigen Test for SARS-CoV-2. China Biotechnology, 2021, 41(5): 27-34.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2102025     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I5/27

Fig.1 Structure chart of test strip for antigen detection
Z-average (d)/nm PDI Zeta potential/mV
未标记胶体金 54.71±0.51 0.17±0.00 -32.70±1.93
鼠抗N蛋白抗体偶合物 81.16±0.48 0.21±0.00 -41.07±0.81
DNP-BSA蛋白偶合物 77.29±1.19 0.23±0.01 -30.23±0.14
Table 1 Particle size and zeta potential of colloidal gold and its coupling
Fig.2 Particle size distribution of colloidal gold and its coupling (a)Unlabeled colloidal gold (b) Mouse anti-N protein antibody conjugate (c) DNP-BSA protein conjugate
Fig.3 The color intensities of different concentrations of inactivated culture.
对照(0周) 2周 4周 6周 8周
T线 C线 T线 C线 T线 C线 T线 C线 T线 C线
质控品1 1 + ++ + ++ + ++ + ++ + ++
2 + ++ + ++ + ++ + ++ + ++
3 + ++ + ++ + ++ + ++ + ++
质控品2 1 +/- ++ +/- ++ +/- ++ +/- ++ +/- ++
2 +/- ++ +/- ++ +/- ++ +/- ++ +/- ++
3 +/- ++ +/- ++ +/- ++ +/- ++ +/- ++
Table 2 The results of accelerated stability
序号 病原体种类 毒株号 浓度 测试结果
1 肺炎支原体 ATCC 15531 / -
2 肺炎衣原体 ATCC VR-2282,TW-183 4.2×102 TCID50/mL -
3 肺炎链球菌 / 1.0×108 CFU/mL -
4 金黄色葡萄球菌 CMCC(B) 26003 3.0×109 CFU/mL -
5 流感嗜血杆菌 GIM 1.961 / -
6 冠状病毒OC43 ATCC VR-1558,OC43 1.8×105 TCID50/mL -
7 冠状病毒229E ATCC VR-740,229E 5.6×104 TCID50/mL -
8 冠状病毒NL63 BELRESOURCES NR-470 / -
9 甲型H1N1流感病毒 A/PR/8/34(H1N1) 1.8×108 TCID50/mL -
10 甲型H3N2流感病毒 L8-A3/Brisbane/10/2007 4.2×106 TCID50/mL -
11 新型甲型H1N1流感病毒(2009) A/GZ/GIRD02/2009(2009H1N1) 106.25 TCID50/0.1mL -
12 乙型流感Victoria L2-BV/Heilongjiang/116/2010 1.0×105 TCID50/mL -
13 乙型流感Yamagata B/Guangzhou/GIRD06/09(Yamagata) 1.0×105 TCID50/0.1mL -
14 呼吸道合胞病毒A型 RSVA/Long 106.25 TCID50/mL -
15 呼吸道合胞病毒B型 RSVB/GZ/Hecin1704-8 2.4×106 TCID50/mL -
16 腺病毒3型 ADV3/GZ/0101/2011 3.2×108 TCID50/mL -
Table 3 The results of cross reaction
YHLO抗原检测试剂 RT-PCR 合计
阳性(+) 阴性(-)
阳性(+) 29 0 29
阴性(-) 1 30 31
合计 30 30 60
Table 4 The results of clinical performance evaluation
[1]   Chen Y, Liu Q Y, Guo D Y. Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal of Medical Virology, 2020,92(4):418-423.
doi: 10.1002/jmv.25681 pmid: 31967327
[2]   Chu D K W, Pan Y, Cheng S M S, et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clinical Chemistry, 2020,66(4):549-555.
doi: 10.1093/clinchem/hvaa029
[3]   Corman V M, Landt O, Kaiser M, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance, 2020,25(3):1-8.
[4]   Lu R J, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet (London, England), 2020,395(10224):565-574.
doi: 10.1016/S0140-6736(20)30251-8
[5]   Paraskevis D, Kostaki E G, Magiorkinis G, et al. Full-genome evolutionary analysis of the novel Corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infection, Genetics and Evolution, 2020,79:104212.
doi: 10.1016/j.meegid.2020.104212
[6]   An J H, Liao X J, Xiao T Y, et al. Clinical characteristics of recovered COVID-19 patients with re-detectable positive RNA test. Annals of Translational Medicine, 2020,8(17):1084.
doi: 10.21037/atm
[7]   Broughton J P, Deng X D, Yu G X, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nature Biotechnology, 2020,38(7):870-874.
doi: 10.1038/s41587-020-0513-4 pmid: 32300245
[8]   Li Z T, Yi Y X, Luo X M, et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. Journal of Medical Virology, 2020,92(9):1518-1524.
doi: 10.1002/jmv.v92.9
[9]   Porte L, Legarraga P, Vollrath V, et al. Evaluation of a novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples. International Journal of Infectious Diseases, 2020,99:328-333.
doi: 10.1016/j.ijid.2020.05.098
[10]   Long Q X, Liu B Z, Deng H J, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nature Medicine, 2020,26(6):845-848.
doi: 10.1038/s41591-020-0897-1
[11]   Qian C G, Zhou M, Cheng F M, et al. Development and multicenter performance evaluation of fully automated SARS-CoV-2 IgM and IgG immunoassays. Clinical Chemistry and Laboratory Medicine, 2020,58(9):1601-1607.
doi: 10.1515/cclm-2020-0548
[12]   Okba N M A, Müller M A, Li W T, et al. Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patients. Emerging Infectious Diseases, 2020,26(7):1478-1488.
doi: 10.3201/eid2607.200841
[13]   Ai T, Yang Z L, Hou H Y, et al. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology, 2020,296(2):E32-E40.
doi: 10.1148/radiol.2020200642
[14]   Zhou P, Yang X L, Wang X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020,579(7798):270-273.
doi: 10.1038/s41586-020-2012-7
[15]   Ji T X, Liu Z W, Wang G Q, et al. Detection of COVID-19: a review of the current literature and future perspectives. Biosensors and Bioelectronics, 2020,166:112455.
doi: 10.1016/j.bios.2020.112455
[16]   Shibata S, Ishiguro T, Kobayashi Y, et al. High incidence of false-positive results of IgG antibody against SARS-CoV-2 with rapid immunochromatographic antibody test due to human common cold coronavirus infection. Respiratory Medicine Case Reports, 2020,31:101180.
doi: 10.1016/j.rmcr.2020.101180 pmid: 32766111
[17]   Cerutti F, Burdino E, Milia M G, et al. Urgent need of rapid tests for SARS CoV-2 antigen detection: Evaluation of the SD-Biosensor antigen test for SARS-CoV-2. Journal of Clinical Virology, 2020,132:104654.
doi: 10.1016/j.jcv.2020.104654
[18]   Nalumansi A, Lutalo T, Kayiwa J, et al. Field evaluation of the performance of a SARS-CoV-2 antigen rapid diagnostic test in Uganda using nasopharyngeal samples. International Journal of Infectious Diseases, 2021,104:282-286.
doi: 10.1016/j.ijid.2020.10.073
[19]   Dinnes J, Deeks J J, Adriano A, et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. The Cochrane Database of Systematic Reviews, 2020, 8: CD013705.
[20]   Scohy A, Anantharajah A, Bodéus M, et al. Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis. Journal of Clinical Virology, 2020,129:104455.
doi: 10.1016/j.jcv.2020.104455
[21]   Jans H, Liu X, Austin L, et al. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies. Analytical Chemistry, 2009,81(22):9425-9432.
doi: 10.1021/ac901822w
[22]   Hunter R J. Zeta potential in colloid science: principles and applications. New York and London: Academic Press, 1981: 59-121.
[23]   James F. EP25-A evaluation of stability of in vitro diagnostic reagents; Approved Guideline. [2021-03-31]. https://clsi.org/standards/products/method-evaluation/documents/ep25/.
[24]   Lambert-Niclot S, Cuffel A, Le Pape S, et al. Evaluation of a rapid diagnostic assay for detection of SARS-CoV-2 antigen in nasopharyngeal swabs. Journal of Clinical Microbiology, 2020,58(8):e00977-e00920.
[25]   Kashiwagi K, Ishii Y, Aoki K, et al. Immunochromatographic test for the detection of SARS-CoV-2 in saliva. Journal of Infection and Chemotherapy, 2021,27(2):384-386.
doi: 10.1016/j.jiac.2020.11.016
[26]   Diao B, Wen K, Chen J, et al. Diagnosis of acute respiratory syndrome coronavirus 2 infection by detection of nucleocapsid protein. [2020-03-13]. https://www.researchgate.net/publication/339846095_Diagnosis_of_Acute_Respiratory_Syndrome_Coronavirus_2_Infection_by_Detection_of_Nucleocapsid_Protein.
[1] YUN Tao,GONG Yue,GU Peng,XU Bing-bing,LI Jin,ZHAO Xi-chen. Present Situation and Prospect of International S&T Cooperation between China and Countries Participating in the “Belt and Road” Initiative to Combat COVID-19[J]. China Biotechnology, 2021, 41(7): 110-121.
[2] KANG Ke-ren,YUAN Qiang,LIANG Fei-min,WU Li-xian. Synthesis of Benzfetamine Artificial Antigen[J]. China Biotechnology, 2021, 41(7): 58-65.
[3] CHEN Chen,HU Jin-chao,CAO Shan-shan,MEN Dong. The Development of Antigen Testing for SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 119-128.
[4] SHI Rui,YAN Jing-hua. Research Progress of Neutralizing Antibody Drugs against SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 129-135.
[5] LI Shuai-peng,REN He,AN Zhan-fei,YANG Yan-kun,BAI Zhong-hu. The Development of Chemiluminescence Immunoassay Detection Method for Thrombomodulin[J]. China Biotechnology, 2021, 41(4): 30-36.
[6] FAN Yue-lei,WANG Yue,WANG Heng-zhe,LI Dan-dan,MAO Kai-yun. Research Progress of in Vitro Diagnostic Technologies for SARS-CoV-2[J]. China Biotechnology, 2021, 41(2/3): 150-161.
[7] ZHANG Sai,XIANG Le,LI Lin-hai,LI Hui-jun,WANG Gang,QIAN Chun-gen. Development and Performance Evaluation of A Rapid IgM-IgG Combined Antibody Test for 2019 Novel Coronavirus Infection[J]. China Biotechnology, 2020, 40(8): 1-9.
[8] WU Rui-jun,LI Zhi-fei,ZHANG Xin,PU Run,AO Yi,SUN Yan-rong. Development and Prospect of Antibody Drugs for SARS-CoV-2[J]. China Biotechnology, 2020, 40(5): 1-6.
[9] WANG Meng,SONG Hui-ru,CHENG Yu-jie,WANG Yi,YANG Bo,HU Zheng. Accurate Detection of Streptococcus pneumoniae by Using Ribosomal Protein L7 / L12 as Molecular Marker[J]. China Biotechnology, 2020, 40(4): 34-41.
[10] XIE Hua-ling,LV Lu-cheng,YANG Yan-ping. Patent Analysis of Global Coronavirus Vaccine[J]. China Biotechnology, 2020, 40(1-2): 57-64.
[11] PAN Tong-tong,CHEN Yong-ping. Research Progress of Key Techniques for Severe/Critical Type of Novel Coronavirus Pneumonia[J]. China Biotechnology, 2020, 40(1-2): 78-83.
[12] LIAO Xiao-yan,CHEN Li-li. The Progress in the Development of COVID-19 Vaccine[J]. China Biotechnology, 2020, 40(12): 8-17.
[13] XU Ying-yong. Current Status and Challenges of Gene Therapy Products[J]. China Biotechnology, 2020, 40(12): 95-103.
[14] LIN Fu-yu,LIU Jin-yi,CHENG Yong-qing. Progress of Interferon α1b Research and Clinical Use Against SARS-CoV-2[J]. China Biotechnology, 2020, 40(12): 1-7.
[15] DAO Feng-ting,YANG Lu,WANG Ya-zhe,CHANG Yan,YUAN Xiao-ying,LI Ling-di,CHEN Wen-min,LONG Ling-yu,LIU Yan-rong,QIN Ya-zhen. Characteristics and Prognostic Significance of Ki-67 Expression at diagnosis in Adult t(8;21) Acute Myeloid Leukemia[J]. China Biotechnology, 2019, 39(9): 11-18.