Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (6): 129-135    DOI: 10.13523/j.cb.2106007
    
Research Progress of Neutralizing Antibody Drugs against SARS-CoV-2
SHI Rui,YAN Jing-hua()
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
Download: HTML   PDF(426KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

With the continuous spread of the COVID-19 epidemic, it is urgent to develop effective therapeutic drugs. Neutralizing antibodies, as the most promising specific therapeutics against SARS-CoV-2, are proved to be effective in clinical trials. The research progress of neutralizing antibodies were summarized, including the involved technologies, and the clinical results in order to provide benefits for developing neutralizing antibodies in emerging infectious diseases including COVID-19.



Key wordsSARS-CoV-2      Neutralizing antibodies      Clinical trial     
Received: 14 May 2021      Published: 06 July 2021
ZTFLH:  Q819  
Corresponding Authors: Jing-hua YAN     E-mail: yanjh@im.ac.cn
Cite this article:

SHI Rui,YAN Jing-hua. Research Progress of Neutralizing Antibody Drugs against SARS-CoV-2. China Biotechnology, 2021, 41(6): 129-135.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2106007     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I6/129

公司 产品 抗体类型 临床阶段 试验号
再生元制药/NIAID REGN-COV2 靶向S蛋白的人IgG1单克隆抗体 临床II/III期 NCT04452318
NCT04426695
NCT04425629
礼来制药/AbCellera/NIH 巴尼韦单抗 靶向S蛋白的人IgG1单克隆抗体 临床II/III期 NCT04497987
NCT04634409
NCT04518410
礼来制药/中国科学院微生物研究所/上海君实生物 埃特司韦单抗/巴尼韦单抗 靶向S蛋白的人IgG1单克隆抗体 临床II/III期 NCT04427501
Vir Biotechnology/GSK VIR-7831/GSK4182136 靶向S蛋白的人IgG1单克隆抗体 临床III期 NCT04545060
AstraZeneca/Vanderbilt AZD8895/AZD1061 靶向S蛋白的人IgG1单克隆抗体 临床III期 NCT04507256
Celltrion CT-P59 靶向S蛋白抗原表位的人单克隆抗体 临床III期 NCT04525079
中国科学院微生物研究所/上海君实生物 埃特司韦单抗(JS016) 靶向S蛋白抗原表位的人单克隆抗体 临床II期 NCT04441918
百济神州/北京丹序生物/北京大学 BGB-DXP593 靶向S蛋白抗原表位的人IgG1单克隆抗体 临床II期 NCT04551898
NCT04532294
Tychan TY027 - 临床I期 NCT04429529
腾盛博药/清华大学 BRII-196/BRII-198 靶向S蛋白抗原表位的人单克隆抗体 临床I期 NCT04479631
NCT04479644
神州细胞工程/中国科学院 SCTA01 靶向S蛋白抗原表位的人源化单克隆抗体 临床I期 NCT04483375
迈威生物 MW33 靶向S蛋白抗原表位的人单克隆抗体 临床I期 NCT05433048
Sorrento/Mount Sinai COVI-GUARD/STI-1499 靶向S蛋白S1亚基的人单克隆抗体 临床I期 NCT04454398
复宏汉霖 HLX70 靶向S蛋白抗原表位的人单克隆抗体 临床I期 NCT04561076
Table 1 Summary of major neutralizing antibodies in clinical trials against SARS-CoV-2
[1]   Hu B, Guo H, Zhou P, et al. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol, 2021, 19(3):141-154.
doi: 10.1038/s41579-020-00459-7
[2]   Wiersinga W J, Rhodes A, Cheng A C, et al. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19). JAMA, 2020, 324(8):782.
doi: 10.1001/jama.2020.12839 pmid: 32648899
[3]   Samrat S K, Tharappel A M, Li Z, et al. Prospect of SARS-CoV-2 spike protein: Potential role in vaccine and therapeutic development. Virus Research, 2020, 288:198141.
doi: 10.1016/j.virusres.2020.198141
[4]   Wang Q H, Zhang Y F, Wu L L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 2020, 181(4): 894-904.e9.
doi: 10.1016/j.cell.2020.03.045
[5]   Costa L B, Perez L G, Palmeira V A, et al. Insights on SARS-CoV-2 molecular interactions with the renin-angiotensin system. Frontiers in Cell and Developmental Biology, 2020, 8:559841. DOI: 10.3389/fcell.2020.559841.
doi: 10.3389/fcell.2020.559841
[6]   Ehrhardt S A, Zehner M, Krähling V, et al. Polyclonal and convergent antibody response to Ebola virus vaccine rVSV-ZEBOV. Nature Medicine, 2019, 25(10):1589-1600.
doi: 10.1038/s41591-019-0602-4
[7]   Domachowske J B, Khan A A, Esser M T, et al. Safety, tolerability and pharmacokinetics of MEDI8897, an extended half-life single-dose respiratory syncytial virus prefusion F-targeting monoclonal antibody administered as a single dose to healthy preterm infants. Pediatric Infectious Disease Journal, 2018, 37(9):886-892.
doi: 10.1097/INF.0000000000001916
[8]   Gaudinski M R, Coates E E, Novik L, et al. Safety, tolerability, pharmacokinetics, and immunogenicity of the therapeutic monoclonal antibody MAb114 targeting Ebola virus glycoprotein (VRC 608): an open-label phase 1 study. The Lancet, 2019, 393(10174):889-898.
doi: 10.1016/S0140-6736(19)30036-4
[9]   Shi R, Shan C, Duan X M, et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature, 2020, 584(7819):120-124.
doi: 10.1038/s41586-020-2381-y
[10]   Cao Y, Su B, Guo X, et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ b cells. Cell, 2020, 182(1):73-84.
doi: 10.1016/j.cell.2020.05.025
[11]   Ju B, Zhang Q, Ge J W, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 2020, 584(7819):115-119.
doi: 10.1038/s41586-020-2380-z
[12]   Chi X Y, Yan R H, Zhang J, et al. A neutralizing human antibody binds to the N-terminal domain of the spike protein of SARS-CoV-2. Science, 2020, 369(6504):650-655.
doi: 10.1126/science.abc6952
[13]   Wang Q, Yang H, Liu X, et al. Molecular determinants of human neutralizing antibodies isolated from a patient infected with Zika virus. Science Translational Medicine, 2016, 8(369): 369ra179.
[14]   King D J, Bowers P M, Kehry M R, et al. Mammalian cell display and somatic hypermutation in vitro for human antibody discovery. Curr Drug Discov Technol, 2014, 11(1):56-64.
doi: 10.2174/15701638113109990037
[15]   Li Y, Wan Y H, Liu P P, et al. A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein. Cell Research, 2015, 25(11):1237-1249.
doi: 10.1038/cr.2015.113
[16]   Yang L F, Liu W H, Yu X, et al. COVID-19 antibody therapeutics tracker: a global online database of antibody therapeutics for the prevention and treatment of COVID-19. Antibody Therapeutics, 2020, 3(3):205-212.
doi: 10.1093/abt/tbaa020
[17]   Jones B E, Brown-Augsburger P L, Corbett K S, et al. LY-CoV555, a rapidly isolated potent neutralizing antibody, provides protection in a non-human primate model of SARS-CoV-2 infection. bioRxiv, 2020, DOI: 10.1101/2020.09.30.318972.
[18]   Gottlieb R L, Nirula A, Chen P, et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19. JAMA, 2021, 325(7):632.
doi: 10.1001/jama.2021.0202
[19]   Hansen J, Baum A, Pascal K E, et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science, 2020, 369(6506):1010-1014.
doi: 10.1126/science.abd0827
[20]   Weinreich D M, Sivapalasingam S, Norton T, et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with covid-19. New England Journal of Medicine, 2021, 384(3):238-251.
doi: 10.1056/NEJMoa2035002
[21]   Pinto D, Park Y J, Beltramello M, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature, 2020, 583(7815):290-295.
doi: 10.1038/s41586-020-2349-y pmid: 32422645
[22]   Bournazos S, Corti D, Virgin H W, et al. Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection. Nature, 2020, 588(7838):485-490.
doi: 10.1038/s41586-020-2838-z
[23]   Dong J H, Zost S J, Greaney A J, et al. Genetic and structural basis for recognition of SARS-CoV-2 spike protein by a two-antibody cocktail. bioRxiv, 2021, DOI: 10.1101/2021.01.27.428529.
[24]   Cheolmin K, Dong-Kyun R, Lee J H, et al. A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nat Commun, 2021, 12(1):288.
doi: 10.1038/s41467-020-20602-5
[25]   Lv Z, Deng Y Q, Ye Q, et al. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science, 2020, 369(6510):1505-1509.
doi: 10.1126/science.abc5881
[26]   Bournazos S, Gupta A, Ravetch J V. The role of IgG Fc receptors in antibody-dependent enhancement. Nature Reviews Immunology, 2020, 20(10):633-643.
doi: 10.1038/s41577-020-00410-0
[27]   Lee W S, Wheatley A K, Kent S J, et al. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nature Microbiology, 2020, 5(10):1185-1191.
doi: 10.1038/s41564-020-00789-5
[28]   Arvin A M, Fink K, Schmid M A, et al. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature, 2020, 584(7821):353-363.
doi: 10.1038/s41586-020-2538-8 pmid: 32659783
[29]   Mackness B C, Jaworski J A, Boudanova E, et al. Antibody Fc engineering for enhanced neonatal Fc receptor binding and prolonged circulation half-life. mAbs, 2019, 11(7):1276-1288.
doi: 10.1080/19420862.2019.1633883 pmid: 31216930
[1] YUN Tao,GONG Yue,GU Peng,XU Bing-bing,LI Jin,ZHAO Xi-chen. Present Situation and Prospect of International S&T Cooperation between China and Countries Participating in the “Belt and Road” Initiative to Combat COVID-19[J]. China Biotechnology, 2021, 41(7): 110-121.
[2] CHEN Chen,HU Jin-chao,CAO Shan-shan,MEN Dong. The Development of Antigen Testing for SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 119-128.
[3] ZHANG Sai,WANG Gang,LIU Zhong-ming,LI Hui-jun,WANG Da-ming,QIAN Chun-gen. Development and Performance Evaluation of a Rapid Antigen Test for SARS-CoV-2[J]. China Biotechnology, 2021, 41(5): 27-34.
[4] FAN Yue-lei,WANG Yue,WANG Heng-zhe,LI Dan-dan,MAO Kai-yun. Research Progress of in Vitro Diagnostic Technologies for SARS-CoV-2[J]. China Biotechnology, 2021, 41(2/3): 150-161.
[5] WU Rui-jun,LI Zhi-fei,ZHANG Xin,PU Run,AO Yi,SUN Yan-rong. Development and Prospect of Antibody Drugs for SARS-CoV-2[J]. China Biotechnology, 2020, 40(5): 1-6.
[6] YUAN Ya-kun,LIU Guang-yang,LIU Yong-jun,XIE Ya-fang,WU Hao. Comparison of Research and Clinical Transformation on Mesenchymal Stem Cells between China and the US[J]. China Biotechnology, 2020, 40(4): 97-107.
[7] XIE Hua-ling,LV Lu-cheng,YANG Yan-ping. Patent Analysis of Global Coronavirus Vaccine[J]. China Biotechnology, 2020, 40(1-2): 57-64.
[8] PAN Tong-tong,CHEN Yong-ping. Research Progress of Key Techniques for Severe/Critical Type of Novel Coronavirus Pneumonia[J]. China Biotechnology, 2020, 40(1-2): 78-83.
[9] LIAO Xiao-yan,CHEN Li-li. The Progress in the Development of COVID-19 Vaccine[J]. China Biotechnology, 2020, 40(12): 8-17.
[10] LIN Fu-yu,LIU Jin-yi,CHENG Yong-qing. Progress of Interferon α1b Research and Clinical Use Against SARS-CoV-2[J]. China Biotechnology, 2020, 40(12): 1-7.
[11] WANG Qi-Zhao, LV Ying-Hui, XIAO Wei-Dong, DIAO Yong, HU Rui-An. The Clinical Researches of Recombinant Adeno-associated Vector[J]. China Biotechnology, 2010, 30(01): 73-79.