Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (1/2): 96-103    DOI: 10.13523/j.cb.2107024
Orginal Article     
The Effect of Cephalosporin C Acetyl Esterase Knockout in Escherichia coli on the Application of Cephalosporin C Acylase
ZHAO Qiang,LIU Yang,ZHOU Jing-hui,XU Gang()
National Engineering Research Center for Enzyme Technology in Medicine and Chemical Industry, Hunan Flag Bio-tech Co., Ltd., Changsha 410100, China
Download: HTML   PDF(1595KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

7-aminocephalosporanic acid (7-ACA) is an important intermediate for synthesis of cephalosporin antibiotics, which is produced by enzymatic conversion of cephalosporin C using cephalosporin C acylase in industry. However, during the reaction process, there is a major impurity 3-deacetyl-7-aminocephalosporanic acid (D-7-ACA) generated from the degradation of cephalosporin C or 7-ACA by cephalosporin C acetyl esterase encoded by the aes gene of Escherichia coli. In order to obtain high-quality 7-ACA and reduce downstream refining costs, it is necessary to prevent the formation of D-7-ACA. Therefore, the corresponding gRNA and donor DNA fragments were designed and the gene aes was knocked out from the chromosome of E. coli BL21(DE3) to generate the engineer E. coli BL21(DE3)△aes using the pTargetF/pCas knockout system. Then, the plasmid of pET30-CPCacy was constructed by inserting the gene CPCacy encoding cephalosporin C acylase into the backbone of pET30(a). The cell lysis supernatants of recombinant strains expressing the cephalosporin C acylase plasmids, including E. coli BL21(DE3)/pET30-CPCacy and E. coli BL21(DE3)△aes/pET30-CPCacy, were applied to the production of the 7-ACA. During the process of cephalosporin C bioconversion, the cephalosporin C utilization efficiency, the yield of 7-ACA and impurity D-7-ACA by each engineered strain were compared. The cephalosporin C conversion rate was 98.8% in E. coli BL21(DE3)△aes/pET30-CPCacy and 98.5% in the original strain, respectively. At the same time, the yield of 7-ACA was 80.7% while that of the original strain was 80.2%,and the yield of impurity D-7-ACA was only 0.1% which was a quarter of the original strain. This work would lay a foundation for the further production of high-quality 7-ACA.



Key words3-Deacetyl-7-aminocephalosporanic acid (D-7-ACA)      CPC acylase (CPCacy)      Cephalosporin C acetyl esterase      pTargetF/pCas     
Received: 07 July 2021      Published: 03 March 2022
ZTFLH:  Q814  
Corresponding Authors: Gang XU     E-mail: hnflag@163.com
Cite this article:

ZHAO Qiang,LIU Yang,ZHOU Jing-hui,XU Gang. The Effect of Cephalosporin C Acetyl Esterase Knockout in Escherichia coli on the Application of Cephalosporin C Acylase. China Biotechnology, 2022, 42(1/2): 96-103.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2107024     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I1/2/96

Fig.1 Schematic diagram of the conversion of cephalosporin C by CPCacy and Aes
引物 序列(5'-3')
pTargetF-Aes-gRNA-F GTTCCCGTTGCGGGCCAGGGGTTTTAGAGCTAGAAATAGCAAG
pTargetF-Aes-gRNA-R CCCTGGCCCGCAACGGGAACACTAGTATTATACCTAGGACTGAGC
Aes-gRNA-GT-F ATTCCAGAATCGGCGCTCAAGCGTGTAATACTGTCGTTGCTCAGCAATCTAAATCCGGC
Aes-gRNA-GT-R TATTTCTGCTGGAATGAAGACCGTTGTGAATACTCTTCAGCCGGATTTAGATTGCTGAG
Aes-Dec-F GCGTGTAATACTGTCGTTGCTCAGC
Aes-Dec-R TCTGGACCTTATTTCTGCTGGAATG
Table 1 The primers sequences of the study
Fig. 2 PCR products analysis of Aes-gRNA M: DNA marker;1: The PCR results of Aes-gRNA
Fig.3 Analysis of aes donor DNA for homologous repair M: DNA marker;1-2: The PCR results of aes donor DNA for homologous repair
Fig.4 PCR products analysis of BL21(DE3) gene knockout strain M: DNA marker;1: The PCR results of BL21(DE3);2-4: The PCR results of BL21(DE3) gene knockout strain
Fig.5 Restriction enzyme analysis of expressed plasmids from recombinant engineered strain M: DNA marker;1-2: The restriction enzyme analysis of recombinant plasmids from BL21(DE3)/pET30-CPCacy and BL21(DE3)△aes/pET30-CPCacy, respectively
Fig. 6 Gene knockout analysis of recombinant engineered strain M: DNA marker;1: The PCR results of BL21(DE3)△aes/pET30-CPCacy;2: The PCR results of BL21(DE3)/pET30-CPCacy
Fig.7 Analysis of D-7-ACA formed from the conversion of cephalosporin C by CPCacy
菌株名称 头孢菌素C
转化率/%
7-ACA
产率/%
D-7-ACA
产率/%
BL21(DE3)aes/pET30-CPCacy 98.5±0.2 80.2±0.1 0.4±0.02
BL21(DE3)△aes/pET30-CPCacy 98.8±0.1 80.7±0.2 0.1±0.01
Table 2 The conversion application results of cephalosporin C acylase
[1]   Monti D, Carrea G, Riva S, et al. Characterization of an industrial biocatalyst: immobilized glutaryl-7-ACA acylase. Biotechnology and Bioengineering, 2000, 70(2):239-244.
pmid: 10972935
[2]   Pollegioni L, Lorenzi S, Rosini E, et al. Evolution of an acylase active on cephalosporin C. Protein Science, 2005, 14(12):3064-3076.
pmid: 16260759
[3]   Jiang W Y, Bikard D, Cox D, et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(3):233-239.
doi: 10.1038/nbt.2508
[4]   Jiang Y, Chen B, Duan C L, et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Applied and Environmental Microbiology, 2015, 81(7):2506-2514.
doi: 10.1128/AEM.04023-14 pmid: 25636838
[5]   Abdelaal A S, Jawed K, Yazdani S S. CRISPR/Cas9-mediated engineering of Escherichia coli for n-butanol production from xylose in defined medium. Journal of Industrial Microbiology & Biotechnology, 2019, 46(7):965-975.
[6]   Sun D C, Wang L, Mao X D, et al. Chemical transformation mediated CRISPR/Cas9 genome editing in Escherichia coli. Biotechnology Letters, 2019, 41(2):293-303.
doi: 10.1007/s10529-018-02639-1
[7]   刘新花, 杨广宇, 邓子新, 等. 基于结构B因子分析指导的头孢菌素C酰化酶动力学稳定性改造. 微生物学通报, 2017, 44(6):1405-1415.
[7]   Liu X H, Yang G Y, Deng Z X, et al. Enhancing enzyme activity and thermostability of cephalosporin C acylase based on B factor analysis. Microbiology China, 2017, 44(6):1405-1415.
[8]   徐雪丽, 张伟, 刘艳, 等. 头孢菌素C酰化酶突变位点的研究. 中国生物工程杂志, 2015, 35(2):59-65.
[8]   Xu X L, Zhang W, Liu Y, et al. Study on mutations of cephalosporin C acylase. China Biotechnology, 2015, 35(2):59-65.
[9]   Ma X Q, Deng S W, Su E Z, et al. One-pot enzymatic production of deacetyl-7-aminocephalosporanic acid from cephalosporin C via immobilized cephalosporin C acylase and deacetylase. Biochemical Engineering Journal, 2015, 95:1-8.
doi: 10.1016/j.bej.2014.11.015
[10]   Wang Y, Yu H M, Zhang J, et al. Double knockout of β-lactamase and cephalosporin acetyl esterase genes from Escherichia coli reduces cephalosporin C decomposition. Journal of Bioscience and Bioengineering, 2012, 113(6):737-741.
doi: 10.1016/j.jbiosc.2012.02.003
[11]   Datsenko K A, Wanner B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS, 2000, 97(12):6640-6645.
pmid: 10829079
[12]   Xu G, Zhao Q, Huang B, et al. Directed evolution of a penicillin V acylase from Bacillus sphaericus to improve its catalytic efficiency for 6-APA production. Enzyme and Microbial Technology, 2018, 119:65-70.
doi: 10.1016/j.enzmictec.2018.08.006
[13]   张洁, 潘艳峰, 邢运哲. 超高效液相色谱法测定D-7-ACA的含量. 煤炭与化工, 2014, 37(5):55-58.
[13]   Zhang J, Pan Y F, Xing Y Z. Determination on content of D-7-ACA by UPLC method. Coal and Chemical Industry, 2014, 37(5):55-58.
[14]   Cobb R E, Wang Y J, Zhao H M. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synthetic Biology, 2015, 4(6):723-728.
doi: 10.1021/sb500351f
[15]   Ronda C, Pedersen L E, Sommer M O A, et al. CRMAGE: CRISPR optimized MAGE recombineering. Scientific Reports, 2016, 6(5):19452.
doi: 10.1038/srep19452
[16]   Li Y F, Lin Z Q, Huang C, et al. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing. Metabolic Engineering, 2015, 31:13-21.
doi: 10.1016/j.ymben.2015.06.006
[17]   陈海龙, 于沛. 头孢类抗生素的新型中间体D-7-ACA. 中国当代医药, 2009, 16(7):46-48.
[17]   Chen H L, Yu P. A novel intermediate of cephalosporins D-7-ACA. China Modern Medicine, 2009, 16(7):46-48.
[18]   Tan Q, Qiu J, Luo X, et al. Progress in one-pot bioconversion of cephalosporin C to 7-aminocephalosporanic acid. Current Pharmaceutical Biotechnology, 2018, 19(1):30-42.
doi: 10.2174/1389201019666180509093956
[19]   Oh B, Kim M, Yoon J, et al. Deacylation activity of cephalosporin acylase to cephalosporin C is improved by changing the side-chain conformations of active-site residues. Biochemical and Biophysical Research Communications, 2003, 310(1):19-27.
doi: 10.1016/j.bbrc.2003.08.110
[20]   Li Y, Chen J F, Jiang W H, et al. In vivo post-translational processing and subunit reconstitution of cephalosporin acylase from Pseudomonas sp. 130. European Journal of Biochemistry, 1999, 262(3):713-719.
pmid: 10411632
[21]   Ishii Y, Saito Y, Fujimura T, et al. High-level production, chemical modification and site-directed mutagenesis of a cephalosporin C acylase from Pseudomonas strain N176. European Journal of Biochemistry, 1995, 230(2):773-778.
pmid: 7607251
[22]   Shin Y C, Jeon J Y, Jung K H, et al. Cephalosporin C acylase mutant and method for preparing 7-ACA using same: US, 0207519. 2007-09-06[2022-01-28].https://www.freepatentsonline.com/y2007/0207519.html.
[1] LI Jiang-bo,GUO Hong-bin,WANG Shi-kun,JIN Rui,CHENG Long. Using Split Green Fluorescent Protein to Detect the Interaction Between Telomerase TERT Subunit and Telomere Terminal Protein TPP1[J]. China Biotechnology, 2022, 42(1/2): 80-87.
[2] CHEN Kai-tong,ZHENG Wen-long,YANG Li-rong,XU Gang,WU Jian-ping. Immobilized L-threonine Aldolase by Amino Resin and Its Application[J]. China Biotechnology, 2021, 41(9): 55-63.
[3] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[4] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[5] TAO Shou-song,REN Guang-ming,YIN Rong-hua,YANG Xiao-ming,MA Wen-bing,GE Zhi-qiang. Knockdown of Deubiquitinase USP13 Inhibits the Proliferation of K562 Cells[J]. China Biotechnology, 2021, 41(5): 1-7.
[6] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[7] CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan. Screening and Characterization of Thermostable Phytase Mutants[J]. China Biotechnology, 2021, 41(2/3): 30-37.
[8] WEI Zi-xiang,ZHANG Liu-qun,LEI Lei,HAN Zheng-gang,YANG Jiang-ke. Improving the Activity and Thermal Stability of Thermomyces lanuginosus Lipase by Rational Design[J]. China Biotechnology, 2021, 41(2/3): 63-69.
[9] XUAN Mei-juan,ZHANG Xiao-yun,GAO Ying,Li-GAO Ying,WU Jia-jing,MA Mei,WANG Yan-mei,KOU Hang,LU Fu-ping,LI Ming. Characterization of Promoters in the Glycolytic Pathway and Tricarboxylic Acid Cycle of E. coli and Its Application[J]. China Biotechnology, 2020, 40(6): 20-30.
[10] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier[J]. China Biotechnology, 2020, 40(5): 57-68.
[11] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[12] SU Yong-jun,HU Die,HU Bo-chun,LI Chuang,WEN Zheng,ZHANG Chen,WU Min-chen. Improving the Enantioselectivity of an Epoxide Hydrolase towards p-Methylphenyl Glycidyl Ether by Site-directed Mutagenesis[J]. China Biotechnology, 2020, 40(3): 88-95.
[13] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA[J]. China Biotechnology, 2020, 40(1-2): 124-132.
[14] ZHU Meng-lu,WANG Xue-yu,LIU Xin,LU Fu-ping,SUN Deng-yue,QIN Hui-min. Heterologous Expression, Purification and Enzymatic Properties of a Novel Leucine 5-Hydroxylase[J]. China Biotechnology, 2019, 39(12): 24-34.
[15] DUAN Li-mei,YANG Jin-xiao,LIU Jia-yu,ZHENG Yong-bo,WU Xiao-hou,LUO Chun-li. shPLCε Inhibits Serine/Glycine Metabolism and Proliferation of Prostate Cancer via YAP Signaling Pathway[J]. China Biotechnology, 2019, 39(11): 1-12.