Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (2/3): 30-37    DOI: 10.13523/j.cb.2010033
    
Screening and Characterization of Thermostable Phytase Mutants
CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan()
School of Biotechnology, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(3391KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Directed evolution of Escherichia coli phytase gene to obtain phytase mutants with improved thermostability. Methods: The mutant gene was obtained by error-prone PCR and the high-throughput screening methods of 96-well plate. After heterologous expression and purification, the mutant enzymes were characterized. Results: Three phytase mutants APPA1, APPA2 and APPA3 with significantly improved thermal stability were obtained through screening. The results of enzymatic properties analysis showed that the molecular weight of the three mutants was about 55kDa, and the optimum pH was 4.5, which was not significantly different from the wild-type. The thermal stability of mutants was significantly improved compared with the wild-type. Among them, the suitable temperature of APPA3 is 65℃, which is 5℃ higher than wild enzyme, and 50% of the enzyme activity is retained after treatment at 90℃ for 10 minutes. The three-dimensional structure simulation of the enzyme showed that the five mutation sites introduced new hydrogen bonds in the overall structure of the phytase. Conclusion: Obtaining Escherichia coli phytase mutants with improved thermal stability through directed evolution is of great significance to the industrial application of phytase and the study of the relationship between phytase structure and function.



Key wordsPhytase      Error-prone PCR      Thermostability      Pichia pastoris     
Received: 25 October 2020      Published: 08 April 2021
ZTFLH:  Q814  
Corresponding Authors: Dan WU     E-mail: wudan@jiangnan.edu.cn
Cite this article:

CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan. Screening and Characterization of Thermostable Phytase Mutants. China Biotechnology, 2021, 41(2/3): 30-37.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2010033     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I2/3/30

名称 粗酶液酶活
(U/mL)
蛋白质浓度
(mg/mL)
比酶活
(U/mg)
野生酶APPA 17.076 0.586 29.140
突变体APPA1 23.265 0.695 33.475
突变体APPA2 16.843 0.574 29.343
突变体APPA3 20.837 0.601 34.671
Table 1 Crude enzyme activity of phytase wild-type and mutants
Fig.1 SDS-PAGE analysis of wild-type and mutant purified products of phytase M:Marker;1:Purified product of wild enzyme APPA;2:Purified product of mutant APPA1;3:Purified product of mutant APPA2;4:Purified product of mutant APPA3
Fig.2 Optimal pH of phytase and its mutants
Fig.3 The pH stability of phytase and its mutants
Fig.4 Optimal temperature of phytase and its mutants
Fig.5 Thermal stability of phytase and its mutants (heat treatment for 10 minutes)
名称 Km
(mmol/L)
kcat
(s-1)
kcat/Km
[L/(mmol·s)]
野生酶APPA 8.85 957.34 108.17
突变体APPA1 8.43 903.71 107.20
突变体APPA2 8.82 972.93 110.31
突变体APPA3 8.96 983.38 109.75
Table 2 Kinetic parameters of phytase and its mutants
Fig.6 Protein 3-D structure of phytase from Escherichia coli (a) Wild enzyme homology modeling three-dimensional structure (b) Active center of phytase
Fig.7 The changes of 3-D structure caused by mutation sites (a)Three-dimensional structure of wild enzyme A138 site (b)Three-dimensional structure of S138 mutation site (c)Three-dimensional structure of wild enzyme K180 site (d)Three-dimensional structure of N180 mutation site (e)Three-dimensional structure of wild enzyme D185 site (f)Three-dimensional structure of E185 mutation site (g)Three-dimensional structure of wild enzyme S189 site (h)Three-dimensional structure of D189 mutation site (i)Three-dimensional structure of wild enzyme K363 site (j)Three-dimensional structure of T363 mutation site
[1]   王红宁, 黄勇, 陈惠, 等. 饲用微生物植酸酶的研究进展. 国外畜牧学(饲料), 1998,( 5):17-20.
[1]   Wang H N, Huang Y, Chen H, et al. Research progress of microbial phytase for feed. Animal Science Abrod (Feed), 1998,5(1):17-20.
[2]   Lott J N A, Ockenden I, Raboy V, et al. Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Science Research, 2000,10(1):11-33.
[3]   Reddy N R, Sathe S K, Salunkhe D K. Phytates in legumes and cereals. Advances in Food Research, 1982,28(1):1-92.
[4]   Frontela C, Scarino M L, Ferruzza S, et al. Effect of dephytinization on bioavailability of iron, calcium and zinc from infant cereals assessed in the Caco-2 cell model. World Journal of Gastroenterology, 2009,15(16):1977-1984.
doi: 10.3748/wjg.15.1977 pmid: 19399930
[5]   Liu N, Ru Y J, Li F D, et al. Effect of diet containing phytate and phytase on the activity and messenger ribonucleic acid expression of carbohydrase and transporter in chickens. Journal of Animal Science, 2008,86(12):3432-3439.
pmid: 18708594
[6]   Lei X, Stahl C. Biotechnological development of effective phytases for mineral nutrition and environmental protection. Applied Microbiology and Biotechnology, 2001,57(4):474-481.
doi: 10.1007/s002530100795 pmid: 11762591
[7]   丁强, 杨培龙, 黄火清, 等. 植酸酶发展现状和研究趋势. 中国农业科技导报, 2010,12(3):27-33.
[7]   Ding Q, Yang P L, Huang H Q, et al. Development status and research trends of phytases. Journal of Agricultural Science and Technology, 2010,12(3):27-33.
[8]   Garrett J B, Kretz K A, O’Donoghue E, , et al. Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement. Applied and Environmental Microbiology, 2004,70(5):3041-3046.
doi: 10.1128/aem.70.5.3041-3046.2004 pmid: 15128565
[9]   Yao M Z, Wang X, Wang W, et al. Improving the thermostability of Escherichia coli phytase, appA, by enhancement of glycosylation. Biotechnology Letters, 2013,35(10):1669-1676.
doi: 10.1007/s10529-013-1255-x pmid: 23794051
[10]   Zhu W, Qiao D, Huang M, et al. Modifying thermostability of AppA from Escherichia coli. Current Microbiology, 2010,61(4):267-273.
doi: 10.1007/s00284-010-9606-5 pmid: 20213104
[11]   Fei B, Xu H, Cao Y, et al. A multi-factors rational design strategy for enhancing the thermostability of Escherichia coli AppA phytase. Journal of Industrial Microbiology and Biotechnology, 2013,40(5):457-464.
pmid: 23494709
[12]   Kim M S, Lei X G. Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR. Applied Microbiology and Biotechnology, 2008,79(1):69-75.
doi: 10.1007/s00253-008-1412-7 pmid: 18340444
[13]   Guerrero-Olazarán M, Rodríguez-Blanco L, Carreon-Trevi?o J G, et al. Bacterial phytase produced in Pichia pastoris. Journal of Biotechnology, 2007,131(2):S233-S234.
[14]   罗会颖, 黄火清, 柏映国, 等. 增加植酸酶基因appA-m的拷贝提高其在巴斯德毕赤酵母的表达量. 生物工程学报, 2006,22(4):528-533.
[14]   Luo H Y, Huang H Q, Bai Y G, et al. Improving phytase expression by increasing the gene copy number of appA m in Pichia pastoris. Chinese Journal of Biotechnology, 2006,22(4):528-533.
[15]   陈琛. 植酸酶活性测定方法的研究进展. 中国饲料, 2010,20:16-18,22.
[15]   Chen C. Research progress of methods for determining the enzyme activity of phytase. China Feed, 2010,20:16-18,22.
[16]   冯慧玲, 李春梅, 吴振芳, 等. 易错PCR技术提高黑曲霉N25植酸酶活力的研究. 生物技术通报, 2010,10(1):226-230.
[16]   Feng H L, Li C M, Wu Z F, et al. Increasing activity of phytase from Aspergillus niger N25 by error-prone PCR. Biotechnology Bulletin, 2010,10(1):226-230.
[17]   Lim D, Golovan S, Forsberg C W, et al. Crystal structures of Escherichia coli phytase and its complex with phytate. Nature Structural Biology, 2000,7(2):108-113.
doi: 10.1038/72371 pmid: 10655611
[18]   Bornscheuer U T, Altenbuchner J, Meyer H H. Directed evolution of an esterase for the stereoselective resolution of a key intermediate in the synthesis of epothilones. Biotechnology and Bioengineering, 1998,58(5):554-559.
doi: 10.1002/(sici)1097-0290(19980605)58:5<554::aid-bit12>3.0.co;2-b pmid: 10099292
[19]   Vogt G, Woell S, Argos P. Protein thermal stability, hydrogen bonds, and ion pairs. Journal of Molecular Biology, 1997,269(4):631-643.
doi: 10.1006/jmbi.1997.1042 pmid: 9217266
[20]   Chakravarty S, Varadarajan R. Elucidation of factors responsible for enhanced thermal stability of proteins: a structural genomics based study. Biochemistry, 2002,41(25):8152-8161.
doi: 10.1021/bi025523t pmid: 12069608
[21]   Pack S P, Yoo Y J. Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins. Journal of Biotechnology, 2004,111(3):269-277.
doi: 10.1016/j.jbiotec.2004.01.018 pmid: 15246663
[22]   Bagautdinov B, Yutani K. Structure of indole‐3‐glycerol phosphate synthase from Thermus thermophilus HB8: implications for thermal stability. Acta Crystallographica Section D,Biological Crystallography, 2011,67(Pt12):1054-1064.
[23]   郭玉淅, 高贺, 倪辉, 等. 基于理性设计提高产微球茎菌AG1琼胶酶的热稳定性. 中国食品学报, 2019,19(12):83-88.
[23]   Guo Y X, Gao H, Ni H, et al. Improving thermal stability of Microbulbifer sp. AG1 agarase based on rational design. Journal of Chinese Institute of Food Science and Technology, 2019,19(12):83-88.
[24]   Wang X, Du J, Zhang Z Y, et al. A rational design to enhance the resistance of Escherichia coli phytase appA to trypsin. Applied Microbiology and Biotechnology, 2018,102(22):9647-9656.
doi: 10.1007/s00253-018-9327-4 pmid: 30178201
[1] MING Yue,ZHAO Zi-tong,WANG Hong-lei,LIANG Zhi-hong. Modification Strategy of Enzyme Thermal Stability Based on Sequence and Structure Analysis[J]. China Biotechnology, 2021, 41(10): 100-108.
[2] CHEN Xin-jie,QIAN Zhi-lan,LIU Qi,ZHAO Qing,ZHANG Yuan-xing,CAI Meng-hao. Modification of Aromatic Amino Acid Synthetic Pathway in Pichia pastoris to Produce Cinnamic Acid and ρ-Coumaric Acid[J]. China Biotechnology, 2021, 41(10): 52-61.
[3] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[4] ZHAO Xiao-yan,CHEN Yun-da,ZHANG Ya-qian,WU Xiao-yu,WANG Fei,CHEN Jin-yin. Site-directed Mutagenesis Improves the Thermostability of Trehalose Synthase TreS II from Myxococcus sp.V11[J]. China Biotechnology, 2020, 40(3): 79-87.
[5] Yuan TIAN,Yan-ling LI. Biosynthesis of Fusaruside Based on Recombinant Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 8-14.
[6] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[7] Li DU,Ling-qia SU,Jing WU. Enhancing Maltose Affinity of Bacillus circulans 251 β-CGTase and its Application in Trehalose Preparation[J]. China Biotechnology, 2019, 39(5): 96-104.
[8] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[9] Si-ming JIAO,Gong CHENG,Yu-chen ZHANG,Cui FENG,Li-shi REN,Jian-jun LI,Yu-guang DU. Expression of Chitinase from Trichoderma reesei and Analysis the Composition and Structure of its Hydrolysates[J]. China Biotechnology, 2018, 38(10): 30-37.
[10] YANG Qing, WANG Bin, WANG Ya-wei, ZHANG Hua-shan, XIONG Hai-rong, ZHANG Li. Comparison of Signal Peptides for Two Hemicellulase Secretory Expression[J]. China Biotechnology, 2017, 37(8): 15-22.
[11] FENG Xue, GAO Xiang, NIU Chun-qing, LIU Yan. Construction of Pichia pastoris Expression Vector of Codon Optimized αB-crystallin Gene and Expression Optimization[J]. China Biotechnology, 2017, 37(7): 42-47.
[12] ZHAN Chun-jun, LI Xiang, LIU Guo-qiang, LIU Xiu-xia, YANG Yan-kun, BAI Zhong-hu. Identification of Glycerol Transporter in Pichia pastoris and Function Research[J]. China Biotechnology, 2017, 37(7): 48-55.
[13] LIU Yan-juan, LI Xu-juan, YUAN Hang, LIU Xian, GAO Yan-xiu, GONG Ming, ZOU Zhu-rong. Fusing the Acyl Carrier Protein Enhances the Solubility and Thermostability of the Recombinant Proteins in Escherichia coli[J]. China Biotechnology, 2017, 37(7): 115-123.
[14] YANG Xu, HUANG Wei-wei, YAO Yu-feng, LIU Cun-bao, SUN Wen-jia, BAI Hong-mei, MA Yan-bing. Impact Factors on the Expression of Recombinant Human Papillomavirus 16 L1 Protein in Pichia pastoris[J]. China Biotechnology, 2017, 37(10): 1-7.
[15] GUO Chao, WANG Zhi-yan, GAN Yi-ru, LI Dan, DENG Yong, YU Hao-ran, HUANG He. Engineering Thermostability of Bovine Enterokinase by Rational Design Method[J]. China Biotechnology, 2016, 36(8): 46-54.