Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (5): 17-26    DOI: 10.13523/j.cb.2102023
    
Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation
HU Xuan1,2,WANG Song1,YU Xue-ling2,ZHANG Xiao-peng2,**()
1 Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073, China
2 Beijing Institute of Biotechnology, Academy of Military Medical Science, Beijing 100071, China
Download: HTML   PDF(33053KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To meet the requirements of rapid and efficient gene editing detection in high-throughput screening applications, it is of great significance to establish an in situ evaluation method on cells. EGFP can be used to evaluate the gene editing performance mediated by the CRISPR system, but the efficiency is limited by the long half-life of EGFP. Methods: A version of destabilized EGFP (EGFP-PEST) was constructed by fusing degradation domain of ornithine decarboxylase (containing PEST motif) to EGFP. The EGFP-PEST gene was introduced into the chromosome of HEK-293T cells by lentivirus, and the copy number of EGFP-PEST gene was measured by RT-qPCR. Finally, cell strains with single copy of EGFP-PEST transgene were established. Results: Compared to unmodified EGFP, the cellular fluorescence of EGFP-PEST significantly decreased within 4 h, suggesting efficient PEST-mediated protein degradation. The cell model was used to evaluate the potential of three commercial lipids to deliver CRISPR/Cas9 complex. Data showed that gene editing was detected in 2-4 days by quantitative or qualitative measurements. Conclusion: This cell model can be used in high-throughput screening for new CRISPR tools or novel delivery systems by indicating the gene editing rapidly and sensitively.



Key wordsFluorescent protein      Single copy      CRISPR system      Cell model      Gene editing     
Received: 22 February 2021      Published: 01 June 2021
ZTFLH:  Q812  
Corresponding Authors: Xiao-peng ZHANG     E-mail: zxp8565@aliyun.com
Cite this article:

HU Xuan,WANG Song,YU Xue-ling,ZHANG Xiao-peng. Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation. China Biotechnology, 2021, 41(5): 17-26.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2102023     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I5/17

Fig.1 The diagram of the pLVX-EGFP-PEST construction principle
Fig.2 Puromycin sensitivity test (0-3 μg/mL) in HEK-293T cells for 7 days in a 24-well plate
Fig.3 Construction of pLVX-EGFP-PEST (a) Electrophoresis after EcoRI/BamHI digestion (b) Colony PCR identification for positive screening
Fig.4 Relationship between the proportion of fluorescent HEK-293T cells and the volume of virus stock solution (a) Fluorescence microscopy images and flow cytometry histograms (b) Linear fitting calculation of the experimental data to plot diagram for the fitting function
Fig.5 Poisson distribution mathematical model of virus-infected cells
Fig.6 Amplification plot, standard curve and melt curve of RT-qPCR Rn: Normalized reporter fluorescence value; Sample 1-9: 10 times the concentration gradient dilution of standard sample (5.244×109-5.244×10 copies/μL)
细胞编号 细胞基因组DNA
浓度/(ng/μL)
Ct平均值 拷贝数浓度
/(copies/μL)
拷贝数
293T-a 146 23.735 28 615 1.27
293T-b 160 23.775 27 866 1.13
293T-c 85 24.773 14 385 1.10
293T-d 60 24.883 13 374 1.44
Table 1 qRT-PCR analysis of the copy number of the EGFP-PEST transgenes
Fig.7 EGFP expression level assessed by flow cytometry
Fig.8 Flow cytometric analysis of the fluorescence stabilities for (a) 293T.EGFP-PEST cells and (b) 293T-EGFP cells
Fig.9 Flow cytometry histograms at different times of 293T.EGFP-PEST cells after transfection with jetCRISPR/Cas9/sgRNA
Fig.10 Flow cytometry histograms of 293T.EGFP-PEST cells 4 days after transfection with RNAiMAX/Cas9/sgRNA and Lipo2000/Cas9/sgRNA
[1]   Tyagi S, Kumar R, Das A, et al. CRISPR-Cas9 system: a genome-editing tool with endless possibilities. Journal of Biotechnology, 2020,319:36-53.
doi: 10.1016/j.jbiotec.2020.05.008
[2]   Pickar-Oliver A, Gersbach C A. The next generation of CRISPR-Cas technologies and applications. Nature Reviews Molecular Cell Biology, 2019,20(8):490-507.
doi: 10.1038/s41580-019-0131-5
[3]   Khandaker I, Funderburgh J L, Geary M L, et al. A novel transgenic mouse model for corneal scar visualization. Experimental Eye Research, 2020,200:108270.
doi: S0014-4835(20)30528-5 pmid: 32979396
[4]   Zhou L, Wang X Y, Du S R, et al. Germline specific expression of a vasa homologue gene in the viviparous fish black rockfish (Sebastes schlegelii) and functional analysis of the vasa 3' untranslated region. Frontiers in Cell and Developmental Biology, 2020,8:575788.
doi: 10.3389/fcell.2020.575788
[5]   Lee J K, Chui J L M, Lee R C H, et al. Antiviral activity of ST081006 against the dengue virus. Antiviral Research, 2019,171:104589.
doi: 10.1016/j.antiviral.2019.104589
[6]   Hua Y F, Wu Y Q, Chun X, et al. Establishment of drug screening in human embryonic stem cells based on a high-content screening system. Journal of Pharmacological and Toxicological Methods, 2020,106:106913.
doi: 10.1016/j.vascn.2020.106913
[7]   Giepmans B N G. The fluorescent toolbox for assessing protein location and function. Science, 2006,312(5771):217-224.
doi: 10.1126/science.1124618
[8]   Yen H C S, Xu Q K, Chou D M, et al. Global protein stability profiling in mammalian cells. Science, 2008,322(5903):918-923.
doi: 10.1126/science.1160489
[9]   Yuen G, Khan F J, Gao S J, et al. CRISPR/Cas9-mediated gene knockout is insensitive to target copy number but is dependent on guide RNA potency and Cas9/sgRNA threshold expression level. Nucleic Acids Research, 2017,45(20):12039-12053.
doi: 10.1093/nar/gkx843
[10]   李颖, 纪木火, 杨建军. 绿色荧光蛋白细胞毒性研究进展. 东南大学学报(医学版), 2020,39(1):116-119.
[10]   Li Y, Ji M H, Yang J J. Research progress on cytotoxicity of green fluorescent protein. Journal of Southeast University (Medical Science Edition), 2020,39(1):116-119.
[11]   Ghoda L, van Daalen Wetters T, MacRae M, et al. Prevention of rapid intracellular degradation of ODC by a carboxyl-terminal truncation. Science, 1989,243(4897):1493-1495.
doi: 10.1126/science.2928784
[12]   Rechsteiner M, Rogers S W. PEST sequences and regulation by proteolysis. Trends in Biochemical Sciences, 1996,21(7):267-271.
pmid: 8755249
[13]   Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science, 1986,234(4774):364-368.
doi: 10.1126/science.2876518
[14]   魏泓, 王勇, 刘宇, 等. 重组慢病毒滴度的检测方法: 中国, ZL201010618159.1. 2011-07-27[2021-02-08]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=SCPD&dbname=SCPD2011&filename=CN102134613A&v=leIGKNH38ruFDLPrY8Ej3oZLKIpGwJJ3ST2VaSJ%25mmd2F9D1iVk3iCAJbwJ9ZVD2mmr7Q.
[14]   Wei H, Wang Y, Liu Y, et al. Detection of recombinant lentivirus titer: Chinese, CN102134613A. 2011-07-27[2021-02-08]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=SCPD&dbname=SCPD2011&filename=CN102134613A&v=leIGKNH38ruFDLPrY8Ej3oZLKIpGwJJ3ST2VaSJ%25mmd2F9D1iVk3iCAJbwJ9ZVD2mmr7Q.
[15]   Zhou X Z, Cui Y, Huang X, et al. Lentivirus-mediated gene transfer and expression in established human tumor antigen-specific cytotoxic T cells and primary unstimulated T cells. Human Gene Therapy, 2003,14(11):1089-1105.
doi: 10.1089/104303403322124800
[16]   诺明途, 梁浩, 聂永伟, 等. 转基因阿尔巴斯白绒山羊外源DsRed基因拷贝数与外源基因表达的关系. 农业生物技术学报, 2016,24(6):871-880.
[16]   Nuo M T, Liang H, Nie Y W, et al. The relationship between exogenous Ds red gene copy number and exogenous gene expression in transgenic arbas cashmere goats(Capra hircus). Journal of Agricultural Biotechnology, 2016,24(6):871-880.
[17]   Brown E J, Pollak M R, Barua M. Genetic testing for nephrotic syndrome and FSGS in the era of next-generation sequencing. Kidney International, 2014,85(5):1030-1038.
doi: 10.1038/ki.2014.48
[18]   Hohlbein J, Gryte K, Heilemann M, et al. Surfing on a new wave of single-molecule fluorescence methods. Physical Biology, 2010,7(3):031001.
doi: 10.1088/1478-3975/7/3/031001
[19]   Fehse B, Kustikova O S, Bubenheim M, et al. Pois(s)on - it’s a question of dose…. Gene Therapy, 2004,11(11):879-881.
doi: 10.1038/sj.gt.3302270
[20]   Spencer S, Gugliotta A, Koenitzer J, et al. Stability of single copy transgene expression in CHOK1 cells is affected by histone modifications but not by DNA methylation. Journal of Biotechnology, 2015,195:15-29.
doi: 10.1016/j.jbiotec.2014.12.009 pmid: 25533398
[21]   Chen S D, Sanjana N E, Zheng K J, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell, 2015,160(6):1246-1260.
doi: 10.1016/j.cell.2015.02.038
[22]   Li D L, Qiu Z W, Shao Y J, et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology, 2013,31(8):681-683.
doi: 10.1038/nbt.2661
[23]   Vouillot L, Thélie A, Pollet N. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 Genes|Genomes|Genetics, 2015,5(3):407-415.
doi: 10.1534/g3.114.015834
[24]   Peng C, Wang H, Xu X L, et al. High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction. The Plant Journal, 2018,95(3):557-567.
doi: 10.1111/tpj.2018.95.issue-3
[25]   Peng C, Zheng M, Ding L, et al. Accurate detection and evaluation of the gene-editing frequency in plants using droplet digital PCR. Frontiers in Plant Science, 2020,11:610790.
doi: 10.3389/fpls.2020.610790
[26]   You Q, Zhong Z H, Ren Q R, et al. CRISPRMatch: an automatic calculation and visualization tool for high-throughput CRISPR genome-editing data analysis. International Journal of Biological Sciences, 2018,14(8):858-862.
doi: 10.7150/ijbs.24581 pmid: 29989077
[27]   Liu Q, Wang C, Jiao X Z, et al. Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems. Science China Life Sciences, 2019,62(1):1-7.
doi: 10.1007/s11427-018-9402-9
[28]   Park H, Oh J, Shim G, et al. In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nature Neuroscience, 2019,22(4):524-528.
doi: 10.1038/s41593-019-0352-0
[29]   Ramakrishna S, Kwaku Dad A B, Beloor J, et al. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Research, 2014,24(6):1020-1027.
doi: 10.1101/gr.171264.113 pmid: 24696462
[30]   Lee K, Conboy M, Park H M, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nature Biomedical Engineering, 2017,1(11):889-901.
doi: 10.1038/s41551-017-0137-2
[31]   Chen G J, Abdeen A A, Wang Y Y, et al. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nature Nanotechnology, 2019,14(10):974-980.
doi: 10.1038/s41565-019-0539-2
[32]   Liu X J, Zhang Y P, Cheng C, et al. CRISPR-Cas9-mediated multiplex gene editing in CAR-T cells. Cell Research, 2017,27(1):154-157.
doi: 10.1038/cr.2016.142
[33]   Eoh J, Gu L. Biomaterials as vectors for the delivery of CRISPR-Cas9. Biomaterials Science, 2019,7(4):1240-1261.
doi: 10.1039/C8BM01310A
[34]   Elouahabi A, Ruysschaert J M. Formation and intracellular trafficking of lipoplexes and polyplexes. Molecular Therapy, 2005,11(3):336-347.
doi: 10.1016/j.ymthe.2004.12.006
[35]   Liu C Y, Wan T, Wang H, et al. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Science Advances, 2019, 5(6): eaaw8922.
doi: 10.1126/sciadv.aaw8922
[36]   Yue H H, Zhou X M, Cheng M, et al. Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing. Nanoscale, 2018,10(3):1063-1071.
doi: 10.1039/C7NR07999K
[37]   Mout R, Ray M, Yesilbag Tonga G, et al. Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano, 2017,11(3):2452-2458.
doi: 10.1021/acsnano.6b07600
[1] LENG Yan,SUN Kang-tai,LIU Qian-qian,PU A-qing,LI Xiang,WAN Xiang-yuan,WEI Xun. Trends of Global Gene-edited Crops Supervision[J]. China Biotechnology, 2021, 41(12): 24-29.
[2] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[3] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.
[4] Cheng-cheng ZHAO,Chang-po SUN,Xiao-jiao CHANG,Song-ling WU,Zhen-quan LIN. Construction and Application of Cell Lysis Systems in the Expression of Mycotoxin Degrading Enzyme in Escherichia coli[J]. China Biotechnology, 2019, 39(4): 69-77.
[5] YANG Chun-yan,WANG Lei,MU Deng-cai,LI Fang-fang,SHEN Hao,ZHENG Shang-yong. Advances of Gene Editing in Disease Treatment[J]. China Biotechnology, 2019, 39(11): 87-95.
[6] Ran XU,Song CHEN. Research Progress of CRISPR/Cas9 Delivery System and Its Application in Gene-related Diseases[J]. China Biotechnology, 2018, 38(3): 81-88.
[7] Yuan-qiao CHEN,Ding-pei LONG,Xiao-xue DOU,Run QI,Ai-chun ZHAO. Studies on the Protein Purification Ability of an ELP30-Tag in Prokaryotic Expression System[J]. China Biotechnology, 2018, 38(2): 54-60.
[8] XU Li, WANG Yue, YAO Chi-yuan, XU Ping. Trends and Development Bottleneck Analysis of Gene Editing Technology[J]. China Biotechnology, 2018, 38(12): 113-122.
[9] A Li ma, GAO Yuan, SU Xiao-hu, ZHOU Huan-min. Establishment of CRISPR/Cas9-edited FGF5 Cell Strains in Cashmere Goat[J]. China Biotechnology, 2016, 36(7): 41-47.
[10] DU Jing-jing, LI Qiang, CHENG Xiao, SHEN Lin-yuan, LI Xue-wei, ZHANG Shun-hua, ZHU Li. Research Progress in CRISPR/Cas System and the Prospect in Animal Genetic Improvement[J]. China Biotechnology, 2016, 36(7): 92-103.
[11] WEI Yan, WANG Huan-qin, WU Meng, ZHANG Feng-juan, LIANG Guo-dong, ZHU Wu-yang. Construction and Identification of the Cell Line for Detecting Flaviviruses[J]. China Biotechnology, 2015, 35(9): 35-41.
[12] ZHOU Yan, WANG Xiao-nan, YAN Shan-shan, WU Jin-yuan, SUN Mao-sheng, ZHANG Lei, LI Hong-jun. Construction and Coexpression of Recombinant Adenovirus Containing EGFP and Lmx1A[J]. China Biotechnology, 2014, 34(9): 72-79.
[13] YANG Fa-yu, GE Xiang-lian, GU Feng. Progress of Next-generation Targeted Gene-editing Techniques[J]. China Biotechnology, 2014, 34(2): 98-103.
[14] ZHAO Hai-yang, WANG Ze, HUANG Peng-huang, TIAN Hai-shan, LI Xiao-kun, YANG Shu-lin. rhKGF2-EGFP Fusion Expression and Alcohol Liposome Preparation[J]. China Biotechnology, 2014, 34(10): 22-27.
[15] TIAN Ting, CHANG Jian, ZHANG Xin, JIANG Chen-yu, ZHANG Yun-hai, LIU Xiao-mei, ZHANG Chun. In Vivo Imaging of Near-infrared Fluorescent Protein in Skeletal Muscle of Mice Mediated by Recombinant Adeno-associated Virus[J]. China Biotechnology, 2014, 34(10): 67-72.