Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (2): 54-60    DOI: 10.13523/j.cb.20180208
Orginal Article     
Studies on the Protein Purification Ability of an ELP30-Tag in Prokaryotic Expression System
Yuan-qiao CHEN,Ding-pei LONG,Xiao-xue DOU,Run QI,Ai-chun ZHAO()
State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University,Chongqing 400716, China
Download: HTML   PDF(813KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Exploration of the purification efficiency of proteins in prokaryotic expression system(Escherichia coli) by using an elastin-like protein tag(ELP30-tag) with small molecular weight.Methods: The ELP30-tag gene was synthesized and inserted into the pET-28a(+) vector,two intein genes (intein1 & intein2) and an enhanced green fluorescent protein (eGFP) gene were cloned and applied to construct four prokaryotic expression vectors: pET-ELP30, pET-ELP30-eGFP, pET-ELP30-intein1-eGFP and pET-eGFP-intein2-ELP30. All the recombinant plasmids were transferred into E. coli BL21(DE3)and induced by IPTG, respectively. Recombinant proteins ELP30, ELP30-eGFP,ELP30-intein1-eGFP and eGFP-intein2-ELP30 were purified by inverse transition cycling (ITC), and then the cleavage reaction of intein1 and intein2 were induced by adjusting the pH value of the solution or adding DL-Dithiothreitol (DTT), respectively, and last the pure eGFPs were separated by one more ITC reaction.Results: The recombinant proteins ELP30, ELP30-eGFP and eGFP-intein2-ELP30 were purified by using the designed ELP30-tag; the cleavage reaction of inteins from the recombinant proteins ELP30-intein1-eGFP and eGFP-intein2-ELP30, which could be successfully induced,and then the eGFPs were released into the solution but not separated. This lays some foundations for the application and optimization of the ELP-tags with small molecular weight.



Key wordsElastin-like protein(ELP)      Intein      Enhanced green fluorescent protein (eGFP)      Prokaryotic expression      Protein purification     
Received: 05 July 2017      Published: 21 March 2018
ZTFLH:  Q819  
Cite this article:

Yuan-qiao CHEN,Ding-pei LONG,Xiao-xue DOU,Run QI,Ai-chun ZHAO. Studies on the Protein Purification Ability of an ELP30-Tag in Prokaryotic Expression System. China Biotechnology, 2018, 38(2): 54-60.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180208     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I2/54

引物名称 序列(5’-3’)
F1 ACATgcatgcAAGGAGATGGCGCC
R1 CCGctcgagggatccgcatgcggtaccgtcgacCATTATATCTCCTTCTTAAA
eGFP-F1 GGggtaccAACAACAACAACAACAACAACAACAACAACATGGTGAGCAAGGGCGAGGA
eGFP-R1 CGggatccCTTGTACAGCTCGTCCATGC
eGFP-F2 GCtctagaAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGGTGAGCAAGGGCGAGGA
eGFP-R2 GCATGGACGAGCTGTACAAGTGCATCACGGGAGATGCACT
intein2-F AGTGCATCTCCCGTGATGCACTTGTACAGCTCGTCCATGC
intein2-R CCGctcgagGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTAGCGTGGCTGACGAACCCGT
Table 1 Primers for fragments amplification
Fig.1 Construction of expression vectors(a)The expression cassettes of designed expression plasmids (b) Identification of recombinant plasmids by SphⅠ & Xho I 1: pET-28a’; 2: pET-ELP30; 3: pET-ELP30-eGFP;4: pET-ELP30-intein1-eGFP;5: pET-eGFP-intein2-ELP30
Fig.2 Purification of ELP30 and ELP30-eGFPM: Protein maker; 1: Uninduced cell extract; 2: Purification of ELP30 via ELP30-tag;3: Purification of ELP30-eGFP via ELP30-tag; 4: Purification of ELP30-eGFP via His-tag
Fig.3 Detection of fluorescence activity of recombinant proteinsA: PBS(used as negative control); B: ELP30-eGFP;C: ELP30-intein1-eGFP; D: eGFP-intein2-ELP30. White scale bar represents 1 mm
Fig.4 Purification and cleavage of ELP30-intein1-eGFPM: Protein maker; 1: Uninduced cell extract; 2:Supernatant of lysate of ELP30-intein1-eGFP, 3: ELP30-intein1-eGFP purification via ELP30-tag; 4: Cleavage products of ELP30-intein1-eGFP induced by pH shift; 5: Eluate gained by another ITC operation after the cleavage
Fig.5 Purification and cleavage of eGFP-intein2-ELP30M: Protein maker; 1: Uninduced cell extract; 2: Supernatant of lysate of eGFP-intein2-ELP30, 3: eGFP-intein2-ELP30purification via ELP30-tag; 4: Cleavage products of eGFP-intein2-ELP30 induced by DTT; 5: Eluate gained by another ITC operation after the cleavage
重组蛋白 重组蛋白回收率 蛋白浓度
(mg/ml,
ITC-3)
ITC-1 ITC-2 ITC-3
ELP30 93% 70% 61% 0.18
ELP30-eGFP 96% 84% 65% 0.44
eGFP-intein2-ELP30 95% 88% 72% 0.29
Table 2 Recovery rate analysis of recombinant proteins
[1]   Urry D W, Trapane T L, Prasad K U . Phase-structure transitions of the elastin polypentapeptide-water system within the framework of composition-temperature studies. Biopolymers, 1985,24(12):2345-2356.
doi: 10.1002/bip.360241212 pmid: 4092092
[2]   Mcpherson D T, Morrow C, Minehan D S , et al. Production and purification of a recombinant elastomeric polypeptide, G-(VPGVG) 19-VPGV, from Escherichia coli. Biotechnology Progress, 1992,8(4):347-352.
[3]   Meyer D E, Chilkoti A . Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nature Biotechnology, 1999,17(11):1112-1115.
doi: 10.1038/15100 pmid: 10545920
[4]   Mcpherson D T, Xu J, Dan W U . Product purification by reversible phase transition following Escherichia coli expression of genes encoding up to 251 repeats of the elastomeric pentapeptide GVGVP. Protein Expression & Purification, 1996,7(1):51-57.
doi: 10.1006/prep.1996.0008 pmid: 9172783
[5]   Banki M R, Feng L, Wood D W . Simple bioseparations using self-cleaving elastin-like polypeptide tags. Nature Methods, 2005,2(9):659-661.
doi: 10.1038/nmeth787 pmid: 16074986
[6]   Trabbiccarlson K, Liu L, Kim B , et al. Expression and purification of recombinant proteins from Escherichia coli: Comparison of an elastin-like polypeptide fusion with an oligohistidine fusion. Protein Science, 2004,13(12):3274-3284.
doi: 10.1110/ps.04931604 pmid: 2287301
[7]   Banki M R, Wood D W . Inteins and affinity resin substitutes for protein purification and scale up. Microbial Cell Factories, 2005,4(1):32-37.
doi: 10.1186/1475-2859-4-32 pmid: 11876
[8]   Ge X, Trabbic-Carlson K, Chilkoti A , et al. Purification of an elastin-like fusion protein by microfiltration. Biotechnology & Bioengineering, 2006,95(3):424-432.
doi: 10.1002/bit.21046 pmid: 16767781
[9]   Schipperus R, Teeuwen R L, Werten M W , et al. Secreted production of an elastin-like polypeptide by Pichia pastoris. Applied Microbiology & Biotechnology, 2009,85(2):293-301.
[10]   Lin M, Rose-John S, Gr?tzinger J , et al. Functional expression of a biologically active fragment of soluble gp130 as an ELP-fusion protein in transgenic plants: purification via inverse transition cycling. Biochemical Journal, 2006,398(3):577-583.
doi: 10.1042/BJ20060544 pmid: 16716147
[11]   Li Tian, Samuel S M . A cost-effective ELP-intein coupling system for recombinant protein purification from plant production platform. Plos One, 2011,6(8):e24183.
doi: 10.1371/journal.pone.0024183 pmid: 3168869
[12]   李敏, 杨谦 . 一种高效构建同源重组DNA片段的方法--融合PCR. 中国生物工程杂志, 2007,27(8):53-58.
[12]   Li M, Yang Q . China Biotechnology, 2007,27(8):53-58.
[13]   Meyer D E, Chilkoti A . Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules, 2002,3(2):357-367.
doi: 10.1021/bm015630n
[14]   Evans T C J, Benner J, Xu M Q . The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. Journal of Biological Chemistry, 1999,274(26):18359-18363.
doi: 10.1074/jbc.274.26.18359 pmid: 10373440
[15]   Cho Y, Zhang Y, Christensen T , et al. Effects of hofmeister anions on the phase transition temperature of elastin-like polypeptides. Journal of Physical Chemistry B, 2008,112(44):13765-13771.
doi: 10.1021/jp8062977 pmid: 3475179
[16]   Chong S, Mersha F B, Comb D G , et al. Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene, 1997,192(2):271-281.
doi: 10.1109/84.825779 pmid: 9224900
[17]   Shi C, Han T C, Wood D W . Purification of microbially expressed recombinant proteins via a dual ELP split intein system. Methods in Molecular Biology, 2017,1495:13-25.
doi: 10.1007/978-1-4939-6451-2
[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[3] ZHANG Xiao-hang,LI Yuan-yuan,JIA Min-xuan,GU Qi. Identification and Expression of Elastin-like Polypeptides[J]. China Biotechnology, 2020, 40(8): 33-40.
[4] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[5] LI Tong-tong,SONG Cai-ling,YANG Kai-yue,WANG Wen-jing,CHEN Hui-yu,LIU Ming. Preparation and Neutralization Activity of Anti-Canine Parvovirus VP2 Protein Single-chain Antibody[J]. China Biotechnology, 2020, 40(4): 10-16.
[6] CHEN Qiu-li,YANG Li-chao,LI Hui,WEN Sha,LI Gang,HE Min. Prokaryotic Expression,Purification and Preparation of Polyclonal Antibody of Human Nek2 Protein[J]. China Biotechnology, 2020, 40(3): 31-37.
[7] Long-bing YANG,Guo GUO,Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG. Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica[J]. China Biotechnology, 2019, 39(4): 24-31.
[8] Ming-ying LI,Ren-jun WANG,Fun ZHANG,Yan CHI. The Prokaryotic Expression and Activity Analysis of the Fifth Domain of β2GPⅠ and Its Mutants or Short Peptide Fragments[J]. China Biotechnology, 2018, 38(8): 1-9.
[9] Jun-jun CHEN,Ying LOU,Yuan-xing ZHANG,Qin LIU,Xiao-hong LIU. Expression and Purification of Proliferating Cell Nuclear Antigen in Spodoptera frugiperda Cells[J]. China Biotechnology, 2018, 38(7): 14-20.
[10] Xiao-lu GUO,Xiu-fang GONG,Jia-feng CHEN,Chen-xi DING,Dan HU,Xiu-zhen PAN,Chang-jun WANG. Gene Cloning, Expression and Identification of Phosphoglyceric Kinase of Streptococcus suis Serotype 2[J]. China Biotechnology, 2018, 38(3): 16-23.
[11] HE Ya-nan,SUN Yu-liang,REN Ya-kun,LIANG Sheng-ying,YANG Fen,LIU Yan-li,LIN Jun-tang. The Construction and Functional Analysis of Staphylococcal Enterotoxin-like K and GFP Fusion Protein[J]. China Biotechnology, 2018, 38(12): 14-20.
[12] Jian-wei REN,Jun LI,Shang-ze LI. Human CT55 Protein Prokaryotic Expression and Its Production of Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 1-8.
[13] Wei ZHAO,Jing-da LI,Qing-ping LIU. The Development of Downstream Continuous Purification Technology of Recombinant Protein[J]. China Biotechnology, 2018, 38(10): 74-81.
[14] WANG Ming-xuan, CHEN Hai-qin, GU Zhen-nan, CHEN Wei, CHEN Yong-quan. Expression, Purification of Mortierella alpina Δ9 Desaturase and Characterization of Its Cytochrome b5 Domain[J]. China Biotechnology, 2017, 37(3): 43-50.
[15] SUN Wen-jia, YAO Yu-feng, YANG Xu, HUANG Wei-wei, LIU Cun-bao, LONG Qiong, CHU Xiao-jie, MA Yan-bing. Presentation of HPV 16L1 Peptide-based HBcAg Virus-like Particle and Induction of Specific Antibody[J]. China Biotechnology, 2017, 37(3): 58-64.