Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (12): 82-87    DOI: 10.13523/j.cb.2010002
    
Progress in the Construction and Application of Organoids
HE Xun1,**(),ZHANG Peng2,ZHANG Jun-xiang3
1 Shenzhen Sinobioway XinPeng biomedicine co., LTD, Beijing 518057, China
2 National Local Joint Engineering Laboratory of Animal Peptide Drug Development, Hunan Normal University,Changsha 410081, China
3 SINOBIOWAY GROUP CO., LTD, Beijing 100085, China
Download: HTML   PDF(405KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Organoids are driven by stem cells in vitro to form multicellular three-dimensional structures with the micro-anatomical and self-renewing characteristics of the source organs. Organoids produce organ-specific cell types that can reproduce part of the function and spatial structure of the corresponding organs. They promote the development of life medicine research and have shown broad application prospects in cancer basic and clinical research, regenerative medicine and other fields. This review summarizes the research progress of organoids in recent years, including introducing its construction process and culture system and expounding its advantages and disadvantages as an in vitro research model, which provides a reference for scientific research and application based on organoids.



Key wordsOrganoid      Tumor      Construction     
Received: 10 October 2020      Published: 14 January 2021
ZTFLH:  Q819  
Corresponding Authors: Xun HE     E-mail: hexun168@sina.com
Cite this article:

HE Xun,ZHANG Peng,ZHANG Jun-xiang. Progress in the Construction and Application of Organoids. China Biotechnology, 2020, 40(12): 82-87.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2010002     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I12/82

组织类型 组织来源 干细胞培养主要因子 干细胞分化因子
成年人 EGF, Noggin,R-spondin,Wnt-3A,FGF-10 EGF, R-spondin
小肠 成年人 EGF, Noggin,R-spondin,Wnt-3A,TGF-β和p38抑制剂 EGF, Noggin,R-spondin,TGF-β抑制剂
结肠 成年人 EGF, Noggin,R-spondin,Wnt-3A,TGF-β和p38的抑制剂 EGF, Noggin,R-spondin,TGF-β抑制剂
胰腺 成年人 EGF, Noggin,R-spondin,Wnt-3A,FGF-10,TGF-β抑制剂和烟酰胺 未见报导
成年人 EGF, Noggin,R-spondin,Wnt-3A,FGF-10,TGF-β的抑制剂,烟酰胺和毛喉素 EGF, Noggin,FGF-10,TGF-β抑制剂,Notch抑制剂和BMP7
Table 1 Factors required for the culture of some different tissue-derived organoids
特征 癌症细胞系 条件性重编程 成体干细胞来源的类器官 PDTX
生物库的建立 - ++ +++ -
3D生长特性 ± ± ++ +++
体外癌症表型的保留度 - - ++ +++
体外基因型的保留度 ± ++ ++ ++
正常对照 - ++ +++ -
低通量的药物筛选 +++ +++ +++ +
高通量的药物筛选 +++ +++ ++ -
Table 2 Comparison of the main features of preclinical cancer models in the application of anticancer drug screening
[1]   Sato T, Vries R G, Snippert H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009,459(7244):262-265.
pmid: 19329995
[2]   Sato T, Stange D E, Ferrante M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology, 2011,141(5):1762-1772.
doi: 10.1053/j.gastro.2011.07.050 pmid: 21889923
[3]   Fatehullah A, Tan S H, Barker N. Organoids as an in vitro model of human development and disease. Nature Cell Biology, 2016,18(3):246-254.
doi: 10.1038/ncb3312 pmid: 26911908
[4]   Drost J, Clevers H. Organoids in cancer research. Nat Rev Cancer, 2018,18(7):407-418.
doi: 10.1038/s41568-018-0007-6 pmid: 29692415
[5]   Shamir E R, Ewald A J. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol, 2014,15(10):647-664.
pmid: 25237826
[6]   Stingl J, Eaves C J, Zandieh I, et al. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat, 2001,67(2), 93-109.
pmid: 11519870
[7]   Sato T, Clevers H. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science, 2013,340(6137):1190-1194.
pmid: 23744940
[8]   Korinek V, Barker N, Moerer P. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet, 1998,19(4):379-383.
doi: 10.1038/1270 pmid: 9697701
[9]   Pinto D, Gregorieff A, Begthel H, et al. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev, 2003,17(14):1709-1713.
doi: 10.1101/gad.267103 pmid: 12865297
[10]   Haramis A-P G, Begthel H, Maaike van den B, et al. De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science, 2004,303(5664), 1684-1686.
pmid: 15017003
[11]   Dignass A U, Sturm A. Peptide growth factors in the intestine. Eur J Gastroenterol Hepatol, 2001,13(7), 763-770.
doi: 10.1097/00042737-200107000-00002 pmid: 11474304
[12]   Sato T Clevers H. SnapShot: growing organoids from stem cells. Cell, 2015, 161(7):1700-1700.e1.
doi: 10.1016/j.cell.2015.05.027 pmid: 26073942
[13]   Yuki O, Sato T. Intestinal tumor in a dish. Front Med (Lausanne), 2014,1:10-14.
[14]   Hisha H, Tanaka T, Kanno S, et al. Establishment of a novel lingual organoid culture system: generation of organoids having mature keratinized epithelium from adult epithelial stem cells. Sci Rep, 2013,3:3224.
doi: 10.1038/srep03224 pmid: 24232854
[15]   Barker N, Huch M, Kujala , et al. Lgr5+ve stem cells drive self-renewal in the stomach and build longlived gastric units in vitro. Cell Stem Cell, 2010,6(1):25-36.
pmid: 20085740
[16]   Stange D, Koo B K, Huch M, et al. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell, 2013,155(2):357-368.
doi: 10.1016/j.cell.2013.09.008 pmid: 24120136
[17]   Boj S F, Hwang C, Baker L, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell, 2015,160(1-2):324-338.
[18]   Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors]. Cell, 2006,126(4):663-676.
doi: 10.1016/j.cell.2006.07.024 pmid: 16904174
[19]   Noguchi TAK, Ninomiya N, Sekine M, et al. Generation of stomach tissue from mouse embryonic stem cells. Nat. Cell Biol, 2015,17(8):984-993.
[20]   Koehler K R, Mikosz A M, Molosh A I, et al. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature, 2013,500(7461):217-221.
doi: 10.1038/nature12298 pmid: 23842490
[21]   Marx V. Cell-line authentication demystified. Nat Methods, 2014,11(5):483-488.
doi: 10.1038/nmeth.2932 pmid: 24781320
[22]   Masters J R, Stacey G N. Changing medium and passaging cell lines. Nat Protocols, 2007,2(9):2276-2284.
doi: 10.1038/nprot.2007.319
[23]   Liu X, Ory V, Chapman S, et al. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am J Pathol, 2012,180(2):599-607.
doi: 10.1016/j.ajpath.2011.10.036 pmid: 22189618
[24]   Ben-David U, Ha G, Tseng Y Y, et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet, 2017,49(11):1567-1575.
doi: 10.1038/ng.3967 pmid: 28991255
[25]   Byrne A T, Alférez D G, Amant F, et al. Interrogating open issues in cancer medicine with patient-derived xenografts. Nat Rev Cancer, 2017,17(10):254-268.
[26]   Wetering M, Francies H E, Francis J M, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell, 2015,161(4):933-945.
doi: 10.1016/j.cell.2015.03.053 pmid: 25957691
[27]   Sachs N, Ligh J, Kopper O, et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell, 2018,172(1-2):373-386.
doi: 10.1016/j.cell.2017.11.010 pmid: 29224780
[28]   Barretina J, Caponigro G, Stransky N, et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 2012,483(7391):603-607.
doi: 10.1038/nature11003 pmid: 22460905
[29]   Kamb A. What’s wrong with our cancer models? Nat Rev Drug Discov, 2005,4(2):161-165.
doi: 10.1038/nrd1635 pmid: 15688078
[30]   Caponigro G, Sellers W R. Advances in the preclinical testing of cancer therapeutic hypotheses. Nat Rev Drug Discov, 2011,10(3), 179-187.
doi: 10.1038/nrd3385 pmid: 21358737
[31]   Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science, 2018,359(6378):920-926.
doi: 10.1126/science.aao2774 pmid: 29472484
[32]   Shenoy T R, Boysen G, Wang M Y, et al. CHD1 loss sensitizes prostate cancer to DNA damaging therapy by promoting error prone double-strand break repair. Ann Oncol, 2017,28(7):1495-1507.
doi: 10.1093/annonc/mdx165 pmid: 28383660
[33]   Dekkers J F, Wiegerinck C L, de Jonge H R, et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med, 2013,19(7):939-945.
doi: 10.1038/nm.3201 pmid: 23727931
[34]   Dekkers J F, Berkers G, Kruisselbrink E, et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fifibrosis. Sci Transl Med, 2016;8(344):344ra384.
[35]   Yui S, Nakamura T, Sato T, et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat Med, 2012; 18(4):618e623.
[36]   Yin Y B, Bijvelds M, Wen D, et al. Modeling rotavirus infection and antiviral therapy using primary intestinal organoids. Antiviral Res, 2015,123:120-131.
doi: 10.1016/j.antiviral.2015.09.010 pmid: 26408355
[37]   Bartfeld S, Bayram T, van de Wetering M, et al. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology, 2015, 148(1): 126-136.e6.
doi: 10.1053/j.gastro.2014.09.042 pmid: 25307862
[38]   Salama N R, Hartung M L, Muller A. Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat Rev Microbiol, 2013,11(6):385-399.
doi: 10.1038/nrmicro3016 pmid: 23652324
[39]   Scanu T, Spaapen R M, Bakker J M, et al. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host & Microbe, 2015,17(6):763-774.
doi: 10.1016/j.chom.2015.05.002 pmid: 26028364
[40]   Liu H, Wang Y, Cui K, et al. Advances in hydrogels in organoids and organs-on-a-chip. Adv Mater, 2019,31(50):e1902042.
doi: 10.1002/adma.201902042 pmid: 31282047
[41]   Gjorevski N, Sachs N, Manfrin A, et al. Designer matrices for intestinal stem cell and organoid culture. Nature, 2016,539(7630):560-564.
doi: 10.1038/nature20168 pmid: 27851739
[42]   Neal J T, Li X, Zhu J, et al. Organoid modeling of the tumor immune microenvironment. Cell, 2018,175(7):1972-1988.
doi: 10.1016/j.cell.2018.11.021 pmid: 30550791
[43]   Zhang Y G, Sun J. Study bacteria-host interactions using intestinal organoids. Methods Mol Biol, 2016,1576:249-254.
doi: 10.1007/7651_2016_6 pmid: 27539461
[44]   Weeber F, Ooft S N, Dijkstra K K, et al. Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem Biol, 2017,24(9):1092-1100.
doi: 10.1016/j.chembiol.2017.06.012 pmid: 28757181
[1] ZHAO Meng-ze,LI Feng-zhi,WANG Peng-yin,LI Jian,XU Han-mei. Research Progress of Dual-target Blocking Therapy of PD-L1 and VEGF[J]. China Biotechnology, 2021, 41(9): 71-77.
[2] LV Hui-zhong,ZHAO Chen-chen,ZHU Lian,XU Na. Progress of Using Exosome for Drug Targeted Delivery in Tumor Therapy[J]. China Biotechnology, 2021, 41(5): 79-86.
[3] YUAN Bo,WANG Jie-wen,KANG Guang-bo,HUANG He. Research Progress and Application of Bispecific Nanobody[J]. China Biotechnology, 2021, 41(2/3): 78-88.
[4] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[5] WU Han-rong,WANG Ying,LI Su-ning,SANG Xiao-dong,FAN Ling. Policy Research on the Construction of Biotechnology Base Platforms in China[J]. China Biotechnology, 2021, 41(10): 127-131.
[6] LIN Shi-xin,LIU Dong-chen,LEI Yun,XIONG Sheng,XIE Qiu-ling. Screening, Expression and Specificity Detection of Anti-TNF-α Nanobody[J]. China Biotechnology, 2020, 40(7): 15-21.
[7] YANG Wei,SONG Fang-xiang,WANG Shuai,ZHANG Li,WANG Hong-xia,LI Yan. Preparation and Application of Janus Nanoparticles in Drug Delivery System[J]. China Biotechnology, 2020, 40(7): 70-81.
[8] ZHANG Bao-hui,XIONG Hua-long,ZHANG Tian-ying,YUAN Quan. Research Progress on Vesicular Stomatitis Virus-based Oncolytic Virotherapy[J]. China Biotechnology, 2020, 40(6): 53-62.
[9] TONG Mei,CHENG Yong-qing,LIU Jin-yi,XU Chen. Construction of a Strain for Promoting Production of Small Molecule Antibodies in Periplasmic Space of Escherichia coli[J]. China Biotechnology, 2020, 40(5): 48-56.
[10] DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells[J]. China Biotechnology, 2020, 40(4): 69-77.
[11] QIAN Ying,QIAN Chen,BAI Xiao-qing,WANG Jing-jing. Application of Adjuvant in Cancer Immunotherapy[J]. China Biotechnology, 2020, 40(3): 96-103.
[12] XIAO Xue-jun,TANG Qi,XINHUA Nabi. CAR-T Therapy Targeting Tumor Microenvironment[J]. China Biotechnology, 2020, 40(12): 67-74.
[13] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[14] LIU Yan,DAI Peng,ZHU Yun-feng. Research Progress of Exosome as Tumor Marker[J]. China Biotechnology, 2019, 39(8): 74-79.
[15] Hai-yin LV,Teng-fei WANG,Ren-jun PEI. Progress in Aptamer Based Tumor Immunotherapy[J]. China Biotechnology, 2019, 39(6): 55-61.