Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (4): 84-91    DOI: 10.13523/j.cb.1909042
    
Research Progress in Streptococcus suis Detection Technology
ZHANG Ling-mei,NG Hao-ju()
Laboratory of Veterinary Lemology, College of Animal Science and Technology, Southwest University, Chongqing 400715, China
Download: HTML   PDF(460KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Streptococcus suis (SS) is an important pathogen causing respiratory diseases in pigs, causing huge economic losses to the pig industry around the world. At the same time, SS can infect people through wounds, respiratory tracts and other channels. Accurate, sensitive and rapid SS detection methods help to understand the prevalence of SS in the herd, and then take appropriate prevention, treatment and comprehensive prevention and control measures. In this paper, the detection methods of SS, including selective culture medium, PCR technology, immunology and molecular typing methods, were reviewed. The advantages and disadvantages of these methods and their application were compared, which provided reference for the establishment of standard diagnostic methods of SS.



Key wordsStreptococcus suis      Pathogen      Molecular biology      Molecular typing     
Received: 19 September 2019      Published: 18 May 2020
ZTFLH:  S852.62  
Corresponding Authors: Hao-ju NG     E-mail: kyc_whj@swu.edu.cn
Cite this article:

ZHANG Ling-mei,NG Hao-ju. Research Progress in Streptococcus suis Detection Technology. China Biotechnology, 2020, 40(4): 84-91.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1909042     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I4/84

技术类型 目的基因 检测下限 参考文献
普通PCR sly 未提到 [11]
gdh 未提到 [12]
recN 90 CFU/反应 [13]
多重PCR 16SrDNAgdhmrp 未提到 [15]
CPSepf 10 fg DNA [16]
recN
CPS基因簇
1.6×103 CFU/反应
10 CFU/反应
[17]
[18]
荧光定量PCR gdh 10个拷贝数 [19]
mrpFBPScps2J 1.0×102拷贝数/μL [20]
FBPS 10个拷贝数 [21]
CCs 1.0×103 CFU/反应 [22]
LAMP cps2J98K致病岛 16个拷贝数 [25]
recN 5.4 CFU/反应 [26]
基因芯片 cps129 2 μg样品量 [27]
Table 1 Comparison of various molecular biological detection techniques for Streptococcus suis
[1]   Morales B, Ruiz A, Lacouture S , et al. Clonal distribution of Streptococcus suis isolated from diseased pigs in the central region of Chile. Canadian Journal of Veterinary Research, 2015,79(4):343-346.
pmid: 26424917
[2]   Wertheim H F, Nghia H D, Taylor W , et al. Streptococcus suis: an emerging human pathogen. Clinical Infectious Diseases An Official Publication of the Infectious Diseases Society of America, 2009,48(5):617-625.
doi: 10.1086/596763 pmid: 19191650
[3]   Sanford S E R S . Streptococcus suis disease in pigs. Vet Rec, 2018,183(13):408-410.
doi: 10.1136/vr.k4181 pmid: 30287563
[4]   Arai S, Kim H, Watanabe T , et al. Assessment of pig saliva as a Streptococcus suis reservoir and potential source of infection on farms by use of a novel quantitative polymerase chain reaction assay. Am J Vet Res, 2018,79(9):941-948.
doi: 10.2460/ajvr.79.9.941 pmid: 30153059
[5]   Du P, Zheng H, Zhou J , et al. Detection of multiple parallel transmission outbreak of, Streptococcus suis, human infection by use of genome epidemiology, China, 2005. Emerging Infectious Diseases, 2017,23(2):204-211.
doi: 10.3201/eid2302.160297 pmid: 27997331
[6]   Gomez-Torres J, Nimir A, Cluett J , et al. Human case of Streptococcus suis disease, ontario, Canada. Emerging Infectious Diseases, 2017,23(12):2107-2109.
doi: 10.3201/eid2312.171005 pmid: 29148386
[7]   Princivalli M S, Palmieri C, Magi G , et al. Genetic diversity of Streptococcus suis clinical isolates from pigs and humans in Italy (2003-2007). Euro Surveill, 2009,14(33):15-21.
doi: 10.2807/ese.14.33.19310-en pmid: 19712640
[8]   Rosendal S, Breton J, Henrichsen J , et al. Isolation of Streptococcus suis using a selective medium. Can J Vet Res, 1986,50(4):537-539.
pmid: 3791079
[9]   Kataoka Y, Sugimoto C, Nakazawa M , et al. Detection of Streptococcus suis type 2 in tonsils of slaughtered pigs using improved selective and differential media. Veterinary Microbiology, 1991,4(28):335-342.
doi: 10.1016/0378-1135(91)90068-q pmid: 1949547
[10]   罗隆泽, 李艳春, 郭宗琪 , 等. 猪链球菌选择性培养基研究. 预防医学情报杂志, 2007,23(5):511-514.
[10]   Luo L Z, Li Y C, Guo Z Q , et al. Study on the selective medium of Streptococcus suis. Journal of Preventive Medicine Information, 2007,23(5):511-514.
[11]   Okwumabua O, Abdelmagid O, Chengappa M M , et al. Hybridization analysis of the gene encoding a hemolysin (suilysin) of Streptococcus suis type 2: evidence for the absence of the gene in some isolates. FEMS Microbiol Lett, 1999,181(1):113-121.
doi: 10.1111/j.1574-6968.1999.tb08833.x pmid: 10564796
[12]   Okwumabua O, Michael O’Connor, Shull E , et al. A polymerase chain reaction (PCR) assay specific for Streptococcus suis based on the gene encoding the glutamate dehydrogenase. FEMS Microbiology Letters, 2003,218(1):0-84.
doi: 10.1111/j.1574-6968.2003.tb11512.x pmid: 12583912
[13]   Ishida S, Tien L, Osawa R , et al. Development of an appropriate PCR system for the reclassification of Streptococcus suis. Journal of Microbiological Methods, 2014,107:66-70.
doi: 10.1016/j.mimet.2014.09.003 pmid: 16431041
[13]   [ 14 ] Silva L, Baums C, Rehm T , et al. Virulence-associated gene profiling of Streptococcus suis isolates by PCR. Veterinary Microbiology, 2006,115(1-3):117-127.
doi: 10.1016/j.mimet.2014.09.003 pmid: 16431041
[15]   Tang J, Wang C, Feng Y , et al. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Med, 2006. 3(5):e151.
doi: 10.1371/journal.pmed.0030151 pmid: 16584289
[16]   Wisselink H J, Joosten J J, Smith H E , et al. Multiplex PCR assays for simultaneous detection of six major serotypes and two virulence-associated phenotypes of Streptococcus suis in tonsillar specimens from pigs. Journal of Clinical Microbiology, 2002,40(8):2922-2929.
doi: 10.1128/jcm.40.8.2922-2929.2002 pmid: 12149353
[17]   Hatrongjit R, Akeda Y, Hamada S , et al. Multiplex PCR for identification of six clinically relevant streptococci. Journal of Medical Microbiology, 2017,66(11):1590-1595.
doi: 10.1099/jmm.0.000615 pmid: 29022552
[18]   Kerdsin A, Akeda Y, Hatrongjit R , et al. Streptococcus suis serotyping by a new multiplex PCR. Journal of Medical Microbiology, 2014,63(6):824-830.
doi: 10.1099/jmm.0.069757-0
[19]   Yang W, Cai X, Hao Y , et al. Characterization of Streptococcus suis serotype 2 blood infections using RT-qPCR to quantify glutamate dehydrogenase copy numbers. Journal of Microbiological Methods, 2010,83(3):326-329.
doi: 10.1016/j.mimet.2010.09.013 pmid: 20869401
[20]   Wang W, He k, Ni Y , et al. A method for detecting adhesive related-factors of Streptococcus suis serotype 2 by real-time PCR. Agricultural Science & Technology, 2013,14(10):1378-1382.
[21]   Srinivasan V, McGee L, Njanpop B M , et al. Species-specific real-time PCR assay for the detection of Streptococcus suis from clinical specimens. Diagnostic Microbiology and Infectious Disease, 2016,85(2):131-132.
doi: 10.1016/j.diagmicrobio.2016.02.013 pmid: 27041105
[22]   Hatrongjit R, Kerdsin A, Gottschalk M , et al. Development of a multiplex PCR assay to detect the major clonal complexes of Streptococcus suis relevant to human infection. J Med Microbiol, 2016,65(5):392-396.
doi: 10.1099/jmm.0.000239 pmid: 26932590
[23]   Bonifait L, Veillette M, Letourneau V , et al. Detection of Streptococcus suis in bioaerosols of swine confinement buildings. Applied and Environmental Microbiology, 2014,80(11):3296-3304.
doi: 10.1128/AEM.04167
[24]   Notomi T, Okayama H, Masubuchi H , et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res, 2000,28(12):e63.
doi: 10.1093/nar/28.12.e63 pmid: 10871386
[25]   Zhang J, Zhu J, Ren H , et al. Rapid visual detection of highly pathogenic Streptococcus suis serotype 2 isolates by use of loop-mediated isothermal amplification. Journal of Clinical Microbiology, 2013,51(10):3250-3256.
doi: 10.1128/JCM.01183-13
[26]   Arai S, Tohya M, Yamada R , et al. Development of loop-mediated isothermal amplification to detect Streptococcus suis and its application to retail pork meat in Japan. International Journal of Food Microbiology, 2015,208:35-42.
doi: 10.1016/j.ijfoodmicro.2015.05.008 pmid: 26043307
[27]   郑峰, 王长军, 曾海攀 , 等. 猪链球菌基因芯片检测方法的研究. 中国人兽共患病学报, 2008,24(01):38-41.
[27]   Zheng F, Wang C, Zeng H , et al. Study on oligonucleotide microarray to detect of Streptococcus suis. Chinese Journal of Zoonoses, 2008,24(01):38-41.
[28]   Higgins R, Gottschalk M, Boudreau M , et al. Description of six new capsular types (29-34) of Streptococcus suis. J Vet Diagn Invest, 1995,7(3):406-406.
doi: 10.1177/104063879500700323 pmid: 7578464
[29]   Gottschalk M, Higgins R, Jacques M , et al. Description of 14 new capsular types of Streptococcus suis. J Clin Microbiol, 1989,27(12):2633-2636.
pmid: 2480359
[30]   Brousseau R, Hill J E, Prefontaine G , et al. Streptococcus suis serotypes characterized by analysis of chaperonin 60 gene sequences. Applied and Environmental Microbiology, 2001,67(10):4828-4833.
doi: 10.1128/aem.67.10.4828-4833.2001 pmid: 11571190
[31]   Tien Le, Nishibori T, Yosuke N , et al. Reappraisal of the taxonomy of Streptococcus suis serotypes 20, 22, 26, and 33 based on DNA-DNA homology and sodA and recN phylogenies. Veterinary Microbiology, 2013,162(2-4):842-849.
doi: 10.1016/j.vetmic.2012.11.001 pmid: 23245487
[32]   King S J, Leigh J A, Heath P J , et al. Development of a multilocus sequence typing scheme for the pig pathogen Streptococcus suis: identification of virulent clones and potential capsular serotype exchange. J Clin Microbiol, 2002,40(10):3671-3680.
doi: 10.1128/jcm.40.10.3671-3680.2002 pmid: 12354864
[33]   Dong W, Zhu Y, Ma Y , et al. Multilocus sequence typing and virulence genotyping of Streptococcus suis serotype 9 isolates revealed high genetic and virulence diversity. FEMS microbiology letters, 2017,364(22).
doi: 10.1093/femsle/fnx192 pmid: 29029051
[34]   Zheng H, Du P C, Qiu X T , et al. Genomic comparisons of Streptococcus suis serotype 9 strains recovered from diseased pigs in Spain and Canada. Veterinary Research, 2018,49(1):1-13.
doi: 10.1186/s13567-017-0498-2 pmid: 29316972
[35]   Williams J G, Kubelik A R, Livak K J , et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990,18(22):6531-6535.
doi: 10.1093/nar/18.22.6531 pmid: 1979162
[36]   Chatellier S, Gottschalk M, Higgins R , et al. Relatedness of Streptococcus suis serotype 2 isolates from different geographic origins as evaluated by molecular fingerprinting and phenotyping. Journal of Clinical Microbiology, 1999,37(2):362-366.
pmid: 9889219
[37]   Martinez G, Pestana A F, Ribeiro K J , et al. Clonal distribution of an atypical MRP+, EF, and suilysin+ phenotype of virulent Streptococcus suis serotype 2 strains in Brazil. The Canadian Journal of Veterinary Research, 2003,67(1):52-55.
pmid: 12528829
[38]   Kidchana A, Meekhanonb N, Hatrongjit R , et al. Application of random amplified polymorphism DNA and 16S-23S rDNA intergenic spacer polymerase chain reaction-restriction fragment length polymorphism to predict major Streptococcus suis clonal complexes isolated from humans and pigs. Molecular and Cellular Probes, 2019,43:34-39.
doi: 10.1016/j.mcp.2018.12.002 pmid: 30528897
[39]   Staats J J, Brandon L, Nietfeld , et al. Use of ribotyping and hemolysin activity to identify highly virulent Streptococcus suis type 2 isolates. Journal of Clinical Microbiology, 1998,36(1):15-19.
pmid: 9431912
[40]   Ghyslaine V, Vanier G, Slater J , et al. New putative virulence factors of Streptococcus suis involved in invasion of porcine brain microvascular endothelial cells. Microbial Pathogenesis, 2009,46(1):13-20.
doi: 10.1016/j.micpath.2008.10.003
[41]   Schwartz D C, Cantor C R . Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell, 1984,37(1):67-75.
doi: 10.1016/0092-8674(84)90301-5 pmid: 6373014
[42]   Marois C, Devendec L L, Gottschalk M , et al. Detection and molecular typing of Streptococcus suis in tonsils from live pigs in France. The Canadian Journal of Veterinary Research, 2007,71(1):14-22.
pmid: 17193877
[43]   Vecht U, Wisselink H J, Anakotta J , et al. Discrimination between virulent and nonvirulent Streptococcus suis type 2 strains by enzyme-linked immunosorbent assay. Veterinary microbiology, 1993,34(1):71-82.
doi: 10.1016/0378-1135(93)90008-u pmid: 8447081
[44]   Martin E, Altman E, Kobisch M , et al. Detection of antibodies against Streptococcus suis capsular type 2 using a purified capsular polysaccharide antigen-based indirect ELISA. Vet Microbiol, 1996,52(1-2):113-125.
doi: 10.1016/0378-1135(96)00056-9 pmid: 8914256
[45]   徐敏, 王淑杰, 蔡雪辉 , 等. 猪链球菌重组GDH蛋白间接ELISA检测方法的建立. 中国预防兽医学报, 2009,31(08):623-626.
[45]   Xu M, Wang J S, Cai X H , et al. Development of an indirect-ELISA for detection of antibodies against Streptococcus suis using recombinant GDH protein as antigen. Chinese Journal of Preventive Veterinary Medicine, 2009,31(08):623-626.
[46]   Xia X J, Wang L, Shen Z Q , et al. Development of an indirect dot-PPA-ELISA using glutamate dehydrogenase as a diagnostic antigen for the rapid and specific detection of Streptococcus suis and its application to clinical specimens. Antonie Van Leeuwenhoek, 2017,110(4):585-592.
doi: 10.1007/s10482-016-0825-z pmid: 28058577
[47]   Yang J X, Min, Chen J F , et al. Development and evaluation of an immunochromatographic strip for detection of Streptococcus suis type 2 antibody. J Vet Diagn Invest, 2007,19(4):355-361.
doi: 10.1177/104063870701900403 pmid: 17609343
[48]   Nakayama T, Zhao J Z, Takeuchi D , et al. Colloidal gold-based immunochromatographic strip test compromising optimised combinations of anti-S.suis capsular polysaccharide polyclonal antibodies for detection of Streptococcus suis. Biosensors and Bioelectronics, 2014,60:175-179.
doi: 10.1016/j.bios.2014.03.074 pmid: 24800681
[49]   Zhu Q, Cai Y Q, Yuan R , et al. Amperometric immunosensor for simultaneous detection of three analytes in one interface using dual functionalized graphene sheets integrated with redox-probes as tracer matrixes. Biosensors and Bioelectronics, 2013,43:440-445.
doi: 10.1016/j.bios.2012.12.030 pmid: 23376803
[50]   Xia X, Wang X, Wei X B , et al. Methods for the detection and characterization of Streptococcus suis: from conventional bacterial culture methods to immunosensors. Antonie Van Leeuwenhoek, 2018,111(12):2233-2247.
doi: 10.1007/s10482-018-1116-7 pmid: 29934695
[1] XU Wen-juan,SONG Dan,CHEN Dan,LONG Hui,CHEN Yu-bao,LONG Feng. Research Progress of Pathogen Detection Technologies Based on CRISPR/CAS Biosensor[J]. China Biotechnology, 2021, 41(8): 67-74.
[2] YUAN Bo-xin,WU Hao,YAN Chun-xiao,LU Juan-e,WEI Zhen-ping,QIAO Jian-jun,RUAN Hai-hua. Progress of Effector Proteins of Pathogenic Bacteria Invading Host Cell Nucleus[J]. China Biotechnology, 2021, 41(7): 81-90.
[3] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[4] SHAO Ying-zhi,CHE Jian,CHENG Chi,JIANG Zhi-yang,XUE Chuang. Advances in Molecular Biological Methods to Improve Extracellular Electron Transport Efficiency of Electroactive Microorganisms[J]. China Biotechnology, 2021, 41(6): 50-59.
[5] ZHOU Zi-hui,LIU Xiao-xian,HUANG Hao,XIAO Rui,QI Ke-zong,WANG Sheng-qi. Application of Surface-enhanced Raman Scattering Based onNano-signal Tags in Pathogen Detection[J]. China Biotechnology, 2021, 41(2/3): 70-77.
[6] JIA Xiao-mei,NI Li,LUO Hong-yan,DING Hong-lei,WANG Hao-ju. Research Progress in Pasteurella Multocida Detection Technology[J]. China Biotechnology, 2020, 40(8): 49-54.
[7] ZHU Xiao-li,HUANG Cui,MA Li-li,ZHANG Chao,GONG Yue,ZHAO Wan-yu,ZHAO Xiu-fang,GUO Wen-jiao,PENG Hao,ZHANG Ji,LIANG Hui-gang. Research Advances of Novel Coronavirus Disease (COVID-19)[J]. China Biotechnology, 2020, 40(1-2): 38-50.
[8] HE Meng,ZHANG Guo-lin,LI Yan,HAN Xue-bo,LIU Hong-peng,LI Xin,QIAN Ling-ling,LIU Kun-mei,GUO Le. Soluble Expression of Recombinant Antigen CagL from Helicobacter pylori Pathogenicity Island and Preparation and Analysis of Anti-CagA Polyclonal Antibody[J]. China Biotechnology, 2020, 40(11): 21-27.
[9] Zuo-bo XU,Jiu-bing LI,Hong-lei DING. Research Progress in Mycoplasma hyopneumonia Detection Technology[J]. China Biotechnology, 2019, 39(4): 78-83.
[10] Jing-xian LIU,Xin HE,Hui-ming HAN. New Progress in the Study of Streptococcus suis Type 2 Virulence Factors[J]. China Biotechnology, 2018, 38(3): 97-104.
[11] NI Xuan, JIANG Xue, LI Ya-qian, CHEN Jie. Construction and Pathogenicity Analysis of ATMT Mutant of Curvularia lunata[J]. China Biotechnology, 2016, 36(1): 23-28.
[12] WANG Hong-su, GUAN Gui-jing, LIU Jin-xiang. Application of Alexa Fluor in Cytology and Molecular Biology[J]. China Biotechnology, 2015, 35(9): 71-77.
[13] WEI Jin-mei, FAN Xiao-qin, XIONG Hai-ting, GAO Xue-juan, LIU Xiao-hui, LIU Lang-xia. hnRNPK Interacts with Nef and Facilitates the Cell Surface Expression of CD4[J]. China Biotechnology, 2015, 35(4): 17-22.
[14] JIANG Yan-chao, JIANG Shi-yun, FU Feng-ming, HUANG Kai, KANG Xing-xin, XU Dan. Advance in Research on HA Biosynthesis and Gene Engineering[J]. China Biotechnology, 2015, 35(1): 104-110.
[15] HAN Qi-can, HUO Guang-hua, LUO Gui-xiang. Screening, Identification and Fermentation Process Optimization of a Wild Fungus Against Pathogens[J]. China Biotechnology, 2014, 34(5): 66-74.