Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (5): 66-74    DOI: 10.13523/j.cb.20140509
    
Screening, Identification and Fermentation Process Optimization of a Wild Fungus Against Pathogens
HAN Qi-can, HUO Guang-hua, LUO Gui-xiang
College of Bioscience And Bioengineering of Jiangxi Agricultural University, Nancang 330045, China
Download: HTML   PDF(1126KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To obtain wild mushrooms having broad-spectrum antimicrobial activity and enhance the antimicrobial compounds productivity were our purpose. The active strains were screened in terms of the methods of well diffusion assay and hypha growth rate. the fermentation parameters for antimicrobial compounds productivity were optimized by response surface analysis and orthogonal test. One white-rot fungus 0331 with broad-spectrum antagonistic to pathogens was obtained, and it was identified as Cerrena sp. by ITS-5.8 rDNA sequences analysis. The fermentation broth showed the antimicrobial activity against Staphylococcus aureus, Escherichia coli, Monilia albican, Bacillus subtilis and Rhizoctnia solani. The optimal medium for 0331 was composed of (in g/L): potatoes 13.99, wheat bran 7.00, Sucrose 41.58, KH2PO4 2.00, MgSO4·7H2O 2.00, VB1 0.027. The optimal culture conditions were as follows: the initial pH value of medium 5.0, the fermentation period 10 d, packing volume 110ml/250ml, inoculation 8mL/100ml, rotate speed 180r/min, temperature 28℃, respectively. The 0331 strain showed obvious antimicrobial activity, with an increase of 30.37% compared to the original fermentation parameters.



Key wordsWild macrofungi      Pathogens      Fermentation process      Response surface methodology     
Received: 05 March 2014      Published: 25 May 2014
ZTFLH:  Q815  
Cite this article:

HAN Qi-can, HUO Guang-hua, LUO Gui-xiang. Screening, Identification and Fermentation Process Optimization of a Wild Fungus Against Pathogens. China Biotechnology, 2014, 34(5): 66-74.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140509     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I5/66


[1] 王江, 张瑞芬, 周莉等. 乳杆菌抑制金黄色葡萄球菌对HeLa细胞的粘附. 生物工程学报, 2012, 28(6): 715-725. Wang J, Zhang R F, Zhou L, et al. Lactobacillus inhibit adhesion of Staphylococcus aureus to HeLa cells. Chin J Biotech, 2012, 28(6): 715-725.

[2] Chopra I, Roberts M. Tetracycline antibiotics. mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and molecular biology reviews, 2001, 65(2): 232-238.

[3] Castillo U F, Strobel G A, Ford E J, et al. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiol, 2002, 148(9): 26752685.

[4] Lisova Z A, Lisov A V, Leontievsky A A. Two laccase isoforms of the basidiomycete Cerrena unicolor VKMF-3196. Induction, isolation and properties. J Basic Microbiol, 2010, 50: 72-82.

[5] Lyashenko A V, Zhukhlistova N E, Gabdoulkhakov A G, et al. Purification, crystallization and preliminary X-ray study of the fungal laccase from Cerrena maxima. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 2006, 62(10): 954-957.

[6] 姚梦吟, 刘晓风, 袁月祥等. 一株选择性降解木质素菌的筛选及其对玉米秸秆的降解. 应用于环境生物学报, 2009, 15 (3): 427431. Yao M Y, Liu X F, Yuan Y X, et al. Isolation of a fungus with selective delignification and its degradation of corn stalk. Chin J Appl Environ Biol. 2009, 15 (3): 427431.

[7] Songulashvili G, Jimenéz-Tobón G A, Jaspers C, et al. Immobilized laccase of Cerrena unicolor for elimination of endocrine disruptor micropollutants. Fungal Biology, 2012, 116(8): 883-889.

[8] Hidayat A, Tachibana S. Degradation of 2, 4, 8-trichlorodibenzofuran by a new isolate of Cerrena sp. F0607. International Biodeterioration & Biodegradation, 2013, 77: 51-55.

[9] Chen S C, Wu PH, Su Y C, et al. Biochemical characterization of a novel laccase from the basidiomycete fungus Cerrena sp. WR1. Protein Engineering Design and Selection, 2012, 25(11): 761-769.

[10] Jaszek M, Osińska-Jaroszuk M, Janusz G, et al. New bioactive fungal molecules with high antioxidant and antimicrobial capacity isolated from Cerrena unicolor idiophasic cultures. BioMed research international, 2013.

[11] 李德舜, 李鹏, 王臻等. 杨树菇抑菌活性提取物理化性质的初步研究. 山东大学学报, 2007, 42(9): 7-10. Li S D, Li P, Wang Z, et al. Physicochemical properties of antimicrobial substances from Agrocybe aegerita. Journal of Shandong University, 2007, 42(9): 7-10.

[12] 张秋胜, 徐丙莲,刘林德等. 10种真菌深层发酵液抑菌活性分析. 中国酿造, 2010, 9: 70-72. Zhang Q S, Xu B L, Liu L D, et al. Antimicrobial activity of fermentation broths from 10 kinds of fungi. China Brewing, 2010, 9: 70-72.

[13] 赵淑莉, 任飞蛾, 刘金亮等. 玉米大斑病生防放线菌的筛选鉴定及发酵条件优化. 微生物学报, 2012, 52(10): 1228-1236. Zhao S L, Ren F E, Liu J L, et al. Screening, identification and optimization of fermentation conditions of an antagonistic actinomycetes strain to Setosphaeria turcica. Acta Microbiologica Sinica, 2012, 52(10): 1228-1236.

[14] Muralidhar R V, Chirumamila R R, Marchant R, et al. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochemical Engineering Journal, 2001, 9: 17-23.

[15] Rahulan R, Nampoothiri KM, Szakacs G, et al. Statistical optimization of 1-leucine amino peptidase production from Streptomyces gedanensis IFO 13427 under submerged fermentation using response surface methodology. Biochemical Engineering Journal, 2009, 43: 64-71.

[16] 凌宏志, 葛菁萍, 平文祥等. 响应面法优化黑曲霉HDF05产β-葡萄糖苷酶过程参数. 生物工程学报, 2011, 27(3): 419-426. Ling H Z, Ge J P, Ping W X, et al. Fermentation optimization by response surface methodology for enhanced production of β-glucosidase of Aspergillus niger HDF05. Chinese Journal of Biotechnology, 2011, 27(3): 419-426.

[17] 赵媛, 米芳, 张鞍灵,等. 褐多孔菌发酵培养基优化. 西北农业大学学报, 2011, 20(2): 182-187. Zhao Y, Mi F, Zhang A L, et al. Optimization of liquid fermentation condition of Polyporus picipes. Acta Agriculturae Boreali-occidentalis Sinica, 2011, 20(2): 182-187.

[1] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[2] LI Liang, WANG Ze-jian, GUO Mei-jin, CHU Ju, ZHUANG Ying-ping, ZHANG Si-liang. Mutagenesis Breeding and Optimization of Cephalosporin C by Cephalosporium acremonium[J]. China Biotechnology, 2014, 34(8): 61-66.
[3] ZHANG Qi, NING Xi-bin, ZHANG Ji-lun. Optimization of Cultivation Conditions for Protease Production from Marine Bacteria by Response Surface Methodology[J]. China Biotechnology, 2013, 33(8): 105-110.
[4] WANG Dan, ZHENG Hong-li, JI Xiao-jun, GAO Zhen. Optimization the Accumulation of Astaxanthin in Chlorella Zofingiensis Using Response Surface Methodology[J]. China Biotechnology, 2013, 33(7): 71-81.
[5] ZHAO Fang-long, ZHU Ling-qing, YANG Xue, LU Wen-yu. Medium Optimization for Rhamnolipids Production by Pseudomonas aeruginosa O-2-2 and LC-MS/MS Analysis[J]. China Biotechnology, 2013, 33(6): 79-85.
[6] WU Wei-ping, CHEN Jie, LI Ya-qian, CHEN Li-jie, DUAN Yu-xi. Optimization of Fermentation Process for Chlamydospores of Trichoderma asperellum by Response Surface Methodology[J]. China Biotechnology, 2013, 33(12): 97-104.
[7] ZHANG Wen, ZHANG Shu-qing, MA Xiao-tong, HE Cui-cui. The Optimization Research of Fermentation Medium of γ-Polyglutamic Acid(γ-PGA) Produced by Bacillus natto[J]. China Biotechnology, 2013, 33(11): 44-50.
[8] CHEN Jie, WEI Hong-gang, LUO Yuan-chan, ZHANG Dao-jing, LI Shu-lan, TIAN Li, LI Yuan-guang. Medium Optimization for the Production of New Antifungl Cyclic Lipopeptide Marinhysin A by Bacillus Marinus B-9987[J]. China Biotechnology, 2013, 33(1): 84-89.
[9] CHEN Jie-mei, XU Cong-cong, CHANG Lei, LIU Yong-ping, MIAO Bing-xuan. Study on Optimization of Soybean Meal Solid-state Fermentation Process for Producing Soybean Antioxidative Peptide by Response Surface Methodology[J]. China Biotechnology, 2012, 32(12): 59-65.
[10] YANG Qi, WANG Ke-rong, KONG Wei-bao, YANG Hong, CAO Hai, ZHANG Xin-yun. Optimization of the Mixotrophic Culture Medium Composition for Biomass Production by Chlorella vulgaris Using Response Surface Methodology[J]. China Biotechnology, 2012, 32(09): 70-75.
[11] AI Zuo-zuo, YAN Ri-ming, YUAN Jin-yun, ZHANG Zhi-bin, ZHU Du. Optimization of Single Cell Oil Produced from Cassava Starch by Response Surface Methodology[J]. China Biotechnology, 2012, 32(07): 66-72.
[12] GU Rui-meng, LI Yong-hao, TIAN Chao-guang. The Medium Optimization of Cellulases Fermentation of Neurospora crassa by Response Surface Methodology[J]. China Biotechnology, 2012, 32(03): 76-82.
[13] WANG Jian-hua, QUAN Chun-shan, ZHAO Peng-chao, FAN Sheng-di. Study on the Inhibition Effect of DKP on the Biofilms Formed by Three Pathogens[J]. China Biotechnology, 2011, 31(8): 61-65.
[14] RUAN Wen-Bing, CHEN Bi-Qin, CHEN Su-Hua, CHEN Bing-Mei, HU Xiao-Beng. Optimization of (R)-Mandelic acid Fermentation Medium by Using Response Surface Methodology[J]. China Biotechnology, 2010, 30(08): 112-117.
[15] SONG Ping, CU Xiao-Ling, HU Yi, XIE Ning-Chang. Optimization of Lipase Production Conditions by Bacillus subtilis Using Surface Methodology[J]. China Biotechnology, 2010, 30(08): 100-105.