Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (11): 113-122    DOI: 10.13523/j.cb.20191113
    
Research Progress in Synthetic Diverse Mutant Libraries
WANG Zhao-guan,WU Yang,QI Hao
School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of Ministry of Education,Syn Bio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering,Tianjin University, Tianjin 300072, China
Download: HTML   PDF(22698KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The construction of mutant library is a key step in the process of directed evolution. It mainly utilizes the system of natural or synthetic molecular technique to generate the diversity of the nucleic acid molecular libraries. It also provides large genetic gene pool for the preparation and screening of protease, polypeptide and artificial antibodies with specific properties. Furthermore, it can be used in the study and selection of genetic element in synthetic biology, providing power to highly industrialized production of biological products. With the deepening of the research on the construction technology of mutant libraries, various library construction strategies have been developed and widely applied in the fields of bioenergy, biochemistry, biomedicine, biological reagent and food industry. However, the strategies of library construction in the directed evolution are different, and the core methods of various mutant library construction technologies are constantly innovated. Here it mainly elucidates the leading technologies of synthesizing multiplex libraries for the laboratory in recent years, and prospects for the development of library construction technology in the direction of automation and intellectualization.



Key wordsDirected      evolution      In      vitro      mutation      Artificial      synjournal      Gene      library     
Received: 17 February 2019      Published: 17 December 2019
ZTFLH:  Q819  
Cite this article:

WANG Zhao-guan,WU Yang,QI Hao. Research Progress in Synthetic Diverse Mutant Libraries. China Biotechnology, 2019, 39(11): 113-122.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20191113     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I11/113

Fig.1 Strategy for building non-assembled mutant libraries (a) The core strategy of QuikChange multi site-directed mutagenesis kit (b) The core strategy of PFLF-MSDM (c) Schematic of directed evolution by in situ error-prone PCR using PPCP (d) Combination strategy of error-prone PCR and DNA shuffling
Fig.2 Several assembly strategies for mutant libraries(a) The basic principle of OD-SPM (b) The core strategy of POEP (c) The core strategy of TEDA (d) The basic steps of the simple-MSSM (e) In vitro CRISPR/cas9-mediated mutagenesis
Fig.3 Several strategies for constructing mutant libraries based on single stranded DNA(a) General strategy for library construction by PFunkel (b) General strategy for library construction by nicking mutagenesis (c) The core strategy of the Darwin assembly for building a mutant library
NameTarget of
mutation
Theoretic
library size
Modification
primers
EfficiencyReference
PFLF-MSDMLacZ(6) and (4)6.4 ×107No40%~80%[21]
In situ epPCRxynARandomNo50%~85%[32]
OD-SPMNeo (11)2.05×10145' phosphorylation100%[38]
POEPLacZ (8)3.2 ×106No100%[40]
TEDAphbCAB(3)8×103No90%[42]
OmniChangePhytase (5)3.2 ×1065'phosphorothioate100%[45]
Simple-MSSMeGFP (5)3.2 ×106No100%[48]
ICMGFP (2)400No94.5%[49]
MegAnnealscFvs200-750ntRandomNo37%~79%[55]
PFunkelBla (4)1.6 ×1055' phosphorylation70%[56]
Nicking MutagenesisBla (3)8×1035' phosphorylation50%[57]
Darwin AssemblyKOD (19)5.24×10245' phosphorylation98%~100%[58]
Table 1 Introduction of some mutation techniques
[1]   Arnold F H.Directed evolution: bringing new chemistry to life. Angewandte Chemie International Edition, 2018, 57(16): 4143-4148.
[2]   Smith G P.Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 1985, 228(4705): 1315-1317.
[3]   Frenzel A, Schirrmann T, Hust M.Phage display-derived human antibodies in clinical development and therapy. MAbs, 2016, 8(7): 1177-1194.
[4]   Chen K, Arnold F H.Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proceedings of the National Academy of Sciences, 1993, 90(12): 5618-5622.
[5]   He M Y, Khan F.Ribosome display: next-generation display technologies for production of antibodies in vitro. Expert Review of Proteomics, 2005, 2(3): 421-430.
[6]   Boder E T, Wittrup K D.Yeast surface display for screening combinatorial polypeptide libraries. Nature Biotechnology, 1997, 15(6): 553-557.
[7]   Deweid L, Neureiter L, Englert S, et al.Directed evolution of a bond-forming enzyme: ultrahigh-throughput screening of microbial transglutaminase using yeast surface display. Chemistry-a European Journal, 2018, 24(57): 15195-15200.
[8]   Boder E T, Wittrup K D.Yeast surface display for screening combinatorial polypeptide libraries. Nature Biotechnology, 1997, 15(6): 553-557.
[9]   Berrade L, Garcia A E, Camarero J A.Protein microarrays: novel developments and applications. Pharmaceutical Research, 2011, 28(7): 1480-1499.
[10]   Packer M S, Liu D R.Methods for the directed evolution of proteins. Nature Reviews Genetics, 2015, 16(7): 379-394.
[11]   Ahmad J, Javed F, Hayat M.Intelligent computational model for classification of sub-Golgi protein using oversampling and fisher feature selection methods. Artificial Intelligence in Medicine, 2017, 78: 14-22.
[12]   Miyazaki K, Takenouchi M.Creating random mutagenesis libraries using megaprimer PCR of whole plasmid. Biotechniques, 2002, 33(5): 1033-1038.
[13]   Miyazaki K.MEGAWHOP cloning: a method of creating random mutagenesis libraries via megaprimer PCR of whole plasmids. Methods in Enzymology, 2011, 498: 399-406.
[14]   Chen W, Zhang S, Jiang P, et al.Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynjournal. Metabolic Engineering, 2015, 30: 149-155.
[15]   Lu Y.Engineering Vibrio fischeri transcriptional activator LuxR for diverse transcriptional activities. Biotechnology Letters, 2016, 38(9): 1459-1463.
[16]   Wan N W, Liu Z Q, Xue F, et al.An efficient high-throughput screening assay for rapid directed evolution of halohydrin dehalogenase for preparation of beta-substituted alcohols. Applied Microbiology and Biotechnology, 2015, 99(9): 4019-4029.
[17]   Hogrefe H H, Cline J, Youngblood G L, et al.Creating randomized amino acid libraries with the QuikChange Multi Site-Directed Mutagenesis Kit. Biotechniques, 2002, 33(5): 1158-1165.
[18]   Sawano A, Miyawaki A.Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis. Nucleic Acids Research, 2000, 28(16): e78-e78.
[19]   Wells J A, Vasser M, Powers D B.Cassette mutagenesis: an efficient method for generation of multiple mutations at defined sites. Gene, 1985, 34(2-3): 315-323.
[20]   Miyazaki K, Arnold F H.Exploring nonnatural evolutionary pathways by saturation mutagenesis: Rapid improvement of protein function. Journal of Molecular Evolution, 1999, 49(6): 716-720.
[21]   Tseng W C, Lin J W, Hung X G, et al.Simultaneous mutations up to six distal sites using a phosphorylation-free and ligase-free polymerase chain reaction-based mutagenesis. Analytical Biochemistry, 2010, 401(2): 315-317.
[22]   Tseng W C, Lin J W, Wei T Y, et al.A novel megaprimed and ligase-free, PCR-based, site-directed mutagenesis method. Analytical Biochemistry, 2008, 375(2): 376-378.
[23]   Sullivan B, Walton A Z, Stewart J D.Library construction and evaluation for site saturation mutagenesis. Enzyme and Microbial Technology, 2013, 53(1): 70-77.
[24]   Lajoie M J, Rovner A J, Goodman D B, et al.Genomically recoded organisms expand biological functions. Science, 2013, 342(6156): 357-360.
[25]   Leung D W.A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique, 1989, 1: 11-15.
[26]   Cadwell R C, Joyce G F.Randomization of genes by PCR mutagenesis. PCR Methods and Applications, 1992, 2(1): 28-33.
[27]   Fujii R, Kitaoka M, Hayashi K.One-step random mutagenesis by error-prone rolling circle amplification. Nucleic Acids Research, 2004, 32(19): e145-e145.
[28]   Fire A, Xu S Q.Rolling replication of short DNA circles. Proceedings of the National Academy of Sciences, 1995, 92(10): 4641-4645.
[29]   Liu D, Daubendiek S L, Zillman M A, et al.Rolling circle DNA synjournal: small circular oligonucleotides as efficient templates for DNA polymerases. Journal of the American Chemical Society, 1996, 118(7): 1587-1594.
[30]   Dean F B, Nelson J R, Giesler T L, et al.Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Research, 2001, 11(6): 1095-1099.
[31]   Lizardi P M, Huang X H, Zhu Z R, et al.Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genetics, 1998, 19(3): 225-232.
[32]   Le Y, Chen H, Zagursky R, et al.Thermostable DNA ligase-mediated PCR production of circular plasmid (PPCP) and its application in directed evolution via in situ error-prone PCR. DNA Research, 2013, 20(4): 375-382.
[33]   Luo X J, Zhao J, Li C X, et al.Combinatorial evolution of phosphotriesterase toward a robust malathion degrader by hierarchical iteration mutagenesis. Biotechnology and Bioengineering, 2016, 113(11): 2350-2357.
[34]   Rigouin C, Nguyen H A, Schalk A M, et al.Discovery of human-like L-asparaginases with potential clinical use by directed evolution. Scientific Reports, 2017, 7(1): 10224.
[35]   Ren X, Wang J, Yu H, et al.Anaerobic and sequential aerobic production of high-titer ethanol and single cell protein from NaOH-pretreated corn stover by a genome shuffling-modified Saccharomyces cerevisiae strain. Bioresource Technology, 2016, 218: 623-630.
[36]   Grimm D, Lee J S, Wang L, et al.In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. Journal of Virology, 2008, 82(12): 5887-5911.
[37]   Herrmann A K, Bender C, Kienle E, et al.A robust and all-inclusive pipeline for shuffling of Adeno-associated viruses (AAV). Acs Synthetic Biology, 2018, 8(1): 194-206.
[38]   Seyfang A, Jin J H Q.Multiple site-directed mutagenesis of more than 10 sites simultaneously and in a single round. Analytical Biochemistry, 2004, 324(2): 285-291.
[39]   Jin P, Kang Z, Zhang J, et al.Combinatorial evolution of enzymes and synthetic pathways using one-step PCR. Acs Synthetic Biology, 2016, 5(3): 259-268.
[40]   Peng R H, Xiong A S, Yao Q H.A direct and efficient PAGE-mediated overlap extension PCR method for gene multiple-site mutagenesis. Applied Microbiology & Biotechnology, 2006, 73(1): 234-240.
[41]   Ho S N, Hunt H D, Horton R M, et al.Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 1989, 77(1): 51-59.
[42]   Xia Y, Li K, Li J, et al.T5 exonuclease-dependent assembly offers a low-cost method for efficient cloning and site-directed mutagenesis. Nucleic Acids Research, 2019, 47(3): e15.
[43]   Gibson D G, Young L, Chuang R Y, et al.Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 2009, 6(5): 343-345.
[44]   Fu C, Donovan W P, Shikapwashya-Hasser O, et al.Hot fusion: an efficient method to clone multiple DNA fragments as well as inverted repeats without ligase. PLoS One, 2014, 9(12): e115318.
[45]   Dennig A, Shivange A V, Marienhagen J, et al.OmniChange: the sequence independent method for simultaneous site-saturation of five codons. PLoS One, 2011, 6(10): e26222.
[46]   You C,Zhang Y H P,.Simple cloning via direct transformation of PCR product (DNA multimer) to Escherichia coli and Bacillus subtilis. Applied and Environmental Microbiology, 2012, 78(5): 1593-1595.
[47]   You C, Zhang Y H P. Easy preparation of a large-size random gene mutagenesis library in Escherichia coli. Analytical Biochemistry, 2012, 428(1): 7-12.
[48]   Cheng F, Xu J M, Xiang C, et al.Simple-MSSM: a simple and efficient method for simultaneous multi-site saturation mutagenesis. Biotechnology Letters, 2017, 39(4): 567-575.
[49]   She W, Ni J, Shui K, et al.Rapid and error-free site-directed mutagenesis by a PCR-free in vitro CRISPR/Cas9-mediated mutagenic system. Acs Synthetic Biology, 2018, 7(9): 2236-2244.
[50]   Kunkel T A.Rapid and efficient site-specific mutagenesis without phenotypic selection. Proceedings of the National Academy of Sciences, 1985, 82(2): 488-492.
[51]   Kunkel T A, Roberts J D, Zakour R A.Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods in Enzymology, 1987, 154: 367-382.
[52]   Weiss G A, Watanabe C K, Zhong A, et al.Rapid mapping of protein functional epitopes by combinatorial alanine scanning. Proceedings of the National Academy of Sciences, 2000, 97(16): 8950-8954.
[53]   Murase K, Morrison K L, Tam P Y, et al.EF-Tu binding peptides identified, dissected, and affinity optimized by phage display. Chemistry & Biology, 2003, 10(2): 161-168.
[54]   Scholle M D, Kehoe J W, Kay B K.Efficient construction of a large collection of phage-displayed combinatorial peptide libraries. Combinatorial Chemistry & High Throughput Screening, 2005, 8(6): 545-551.
[55]   Pai J C, Entzminger K C, Maynard J A.Restriction enzyme-free construction of random gene mutagenesis libraries in Escherichia coli. Analytical Biochemistry, 2012, 421(2): 640-648.
[56]   Firnberg E, Ostermeier M.PFunkel: efficient, expansive, user-defined mutagenesis. PLoS One, 2012, 7(12): e52031.
[57]   Wrenbeck E E, Klesmith J R, Stapleton J A, et al.Plasmid-based one-pot saturation mutagenesis. Nature Methods, 2016, 13(11): 928-930.
[58]   Cozens C, Pinheiro V B.Darwin assembly: fast, efficient, multi-site bespoke mutagenesis. Nucleic Acids Research, 2018, 46(8): e51.
[59]   Engler C, Kandzia R, Marillonnet S.A one pot, one step, precision cloning method with high throughput capability. PLoS One, 2008, 3(11): e3647.
[60]   Malyshev D A, Dhami K, Lavergne T, et al.A semi-synthetic organism with an expanded genetic alphabet. Nature, 2014, 509(7500): 385-388.
[61]   Wang H H, Isaacs F J, Carr P A, et al.Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460(7257): 894-898.
[62]   Ronda C, Pedersen L E, Sommer M O A,et al.CRMAGE: CRISPR optimized MAGE recombineering. Scientific Reports, 2016, 6: 19452.
[63]   D’oelsnitz S, Ellington A.Continuous directed evolution for strain and protein engineering. Current Opinion in Biotechnology, 2018, 53: 158-163.
[64]   Esvelt K M, Carlson J C, Liu D R.A system for the continuous directed evolution of biomolecules. Nature, 2011, 472(7344): 499-503.
[65]   Ravikumar A, Arrieta A, Liu C C.An orthogonal DNA replication system in yeast. Nature Chemical Biology, 2014, 10(3): 175-177.
[66]   Hess G T, Fresard L, Han K, et al.Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nature Methods, 2016, 13(12): 1036-1042.
[67]   Crook N, Abatemarco J, Sun J, et al.In vivo continuous evolution of genes and pathways in yeast. Nature Communications, 2016, 7: 13051.
[68]   Heckmann D, Lloyd C J, Mih N, et al.Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models. Nature Communications, 2018, 9(1): 5252.
[1] LI Xiao-jin,LI Yan-meng,LI Zhen-kun,XU An-jian,YANG Xiao-xi,HUANG Jian. The Mechanism of Copper Accumulation Induced Autophagy in Hepatocytes of ATP7B-deficient Mice Based on RNA-sequencing[J]. China Biotechnology, 2021, 41(9): 10-19.
[2] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[3] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[4] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[5] HE Li-heng,ZHANG Yi,ZHANG Jie,REN Yu-chao,XIE Hong-e,TANG Rui-min,JIA Xiao-yun,WU Zong-xin. Construction of Gene Co-expression Network and Identification of Hub Genes Related to Anthocyanin Biosynthesis Based on RNA-seq and WGCNA in Sweetpotato[J]. China Biotechnology, 2021, 41(9): 27-36.
[6] CHEN Ya-chao,LI Nan-nan,LIU Zi-di,HU Bing,LI Chun. Metagenomic Mining of Functional Genes Related to Glycyrrhizin Synthesis from Endophytes of Licorice[J]. China Biotechnology, 2021, 41(9): 37-47.
[7] YANG Liu,MOU Hao,XU Guo-yang,BAI Yun-chuan,YU Yuan-di. Analysis of the Difference in Color Development of Cultured Goatpox Virus Common Cells in X-gal Environment[J]. China Biotechnology, 2021, 41(9): 48-54.
[8] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[9] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[10] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[11] YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer[J]. China Biotechnology, 2021, 41(8): 59-66.
[12] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[13] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[14] Bao-qi FENG,Jiao FENG,Miao ZHANG,Yang LIU,Rui CAO,Han-zhi YIN,Feng-xian QI,Zi-long LI,Shou-liang YIN. Screening of High Avermectin-producing Strains via Tn5 Transposon Mediated Mutagenesis[J]. China Biotechnology, 2021, 41(7): 32-41.
[15] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.