Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (4): 52-59    DOI: 10.13523/j.cb.20190407
    
Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line
Song-tao ZHOU1,Yun CHEN2,Xiao-hai GONG2,Jian JIN2**(),Hua-zhong LI1**()
1 School of Biotechnology, Jiangnan University, Wuxi 214122, China
2 School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(1412KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The expression cell lines constructed by random integrating target gene into mammal cell’s genome may not express the target gene stably over passages because the target gene might be inserted into unstable region of chromatin, which is known as position effect. To solve this problem, site specific integration of target gene (Human serum albumin gene) into stable hot spot of CHO chromatin by using homologous dependent recombination (HDR) method mediated by CRISPR/Cas9 can be effective, because the position effect issue can be overcome. Here, two site specific integration hits of human serum albumin gene were obtained verified by conducting 5' junction PCR, 3' junction PCR and out-out PCR. The Western blot results revealed target protein could be detected in the supernatants of culture; the average amount of HSA protein expressed per cell per day was around 0.5pg cell/d over different cell passages (passage 3, 12, 23, 35, 50) at adherent cell mode for both two hits. One hit was adapted to suspension culture. The expression level of this hit at batch mode in different cell passages (passage 1, 25, 50) were stably around 13-14mg/L.It was feasible to insert heterogenous gene into the stable hot spot of CHO cell line and corresponding gene expression level was stable over passages.



Key wordsCHO      Site specific integration      CRISPR/Cas9      Protein expression     
Received: 30 November 2018      Published: 08 May 2019
ZTFLH:  Q819  
Corresponding Authors: Jian JIN,Hua-zhong LI     E-mail: jianjin@jiangnan.edu.cn;hzhli@jiangnan.edu.cn
Cite this article:

Song-tao ZHOU,Yun CHEN,Xiao-hai GONG,Jian JIN,Hua-zhong LI. Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line. China Biotechnology, 2019, 39(4): 52-59.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190407     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I4/52

引物名称 目的 序列信息5'-3'
ooPCR_fwd 5' junction PCR, ooPCR引物及测序 GCTACTCACCAAGTGCAGC
HSA_rev 5' junction PCR引物及测序 GGCAGCTTTATCAGCAGCTTG
Puro_fwd 3' junction PCR引物 GAGGAAGTCTTCTAACATGCG
ooPCR_rev 3' junction PCR, ooPCR引物及测序 GGGTGGGCTAAGTACAAGG
HSA_fwd 测序 GGTTGATGTGATGTGCACTG
EF1_rev 测序 CGGCGACTACTGCACTTATA
Table 1 PCR primer for SSI testing
Fig.1 Sequencing peak map revealed sgRNA could guide Cas9 protein to cut target genomic sequence specifically
Fig.2 HSA donor plasmid map and schematic of HSA gene integration into hot spot in CHO genome
Fig.3 Monoclonal HSA knock-in cell line verification (a) 5'junction PCR results of 2 knock-in cell lines (b)3' junction PCR results of 2 knock-in cell lines (c)Sanger sequencing results of 5'/3'junction PCR amplification products (d)out-out PCR results of 2 knock-in cell lines
Table 2 HSA knock-in sequencing results [including CMV promotor and SV40 poly(A) sequence]
Fig.4 Western blot assay of secreted protein from HSA knock-in cell line and expression level assay (a)Authentication of secreted protein within supernatants of 2 HSA monoclonal cell lines (b)Expression level test for secreted HSA protein of 2 monoclonal cell lines in different passages
Fig.5 Adaption to suspension culture of HSA knock-in cell line and HSA expression level assay of suspension cell line (a)HSA knock-in cell line’s density can recover to the original density by the second day after 2 times dilution (b)HSA expression level test of suspended cell in different passages
[1]   Wurm F M . Production of recombinant protein therapeutics in cultivated mammalian cells. Nature Biotechnology, 2004,22(11):1393-1398.
doi: 10.1038/nbt1026 pmid: 15529164
[2]   Wurm F M, Hacker D . First CHO genome. Nature Biotechnology, 2011,29(8):718-720.
doi: 10.1038/nbt.1943
[3]   Kim J, Kim Y G, Lee G . CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Applied Microbiology & Biotechnology, 2012,93(3):917-930.
doi: 10.1007/s00253-011-3758-5 pmid: 22159888
[4]   Fischer S, Handrick R, Otte K . The art of CHO cell engineering: A comprehensive retrospect and future perspectives. Biotechnology Advances, 2015,33(8):1878-1896.
doi: 10.1016/j.biotechadv.2015.10.015 pmid: 26523782
[5]   Wilson C, Bellen H J, Gehring W J . Position effects on eukaryotic gene expression. Annual Review of Cell Biology, 1990,6(1):679-714.
doi: 10.1146/annurev.cb.06.110190.003335 pmid: 2275824
[6]   Lee J S, Kallehauge T B, Pedersen L E , et al. Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Scientific Reports, 2015,5:8572.
doi: 10.1038/srep08572 pmid: 4339809
[7]   Jakociunas T, Jensen M K, Keasling J D . CRISPR/Cas9 advances engineering of microbial cell factories. Metabolic Engingeering, 2016,34:44-59.
doi: 10.1016/j.ymben.2015.12.003 pmid: 26707540
[8]   Lee J S, Grav L M, Pedersen L E , et al. Accelerated homology-directed targeted integration of transgenes in Chinese hamster ovary cells via CRISPR/Cas9 and fluorescent enrichment. Biotechnology Bioengineering, 2016,113(11):2518-2523.
doi: 10.1002/bit.26002 pmid: 27159230
[9]   Kito M, Itami S, Fukano Y , et al. Construction of engineered CHO strains for high-level production of recombinant proteins. Applied Microbiology & Biotechnology, 2002,60(4):442-448.
doi: 10.1007/s00253-002-1134-1 pmid: 12466885
[10]   Gao J, Cha S, Jonsson R , et al. Detection of anti-type 3 muscarinic acetylcholine receptor autoantibodies in the sera of Sjogren’s syndrome patients by use of a transfected cell line assay. Arthritis Rheum, 2004,50(8):2615-2621.
doi: 10.1002/art.20371
[11]   Huang Y, Li Y, Wang Y G , et al. An efficient and targeted gene integration system for high-level antibody expression. Journal of Immunological Methods, 2007,322(1):28-39.
doi: 10.1016/j.jim.2007.01.022 pmid: 17350648
[12]   Schwenk F, Baron U, Rajewsky K , et al. A cre-transgenic mouse strain for the ubiquitous deletion of loxp-flanked gene segments including deletion in germ cells. Nucleic Acid Research, 1995,23(24):5080-5081.
doi: 10.1093/nar/23.24.5080
[13]   Yang-Nim P, Daniel M, Eisenberg E , et al. Application of the FLP/FRT system for conditional gene deletion in yeast Saccharomyces cerevisiae. Yeast, 2011,28(9):673-681.
doi: 10.1002/yea.1895 pmid: 3169912
[14]   Cong L, Ran F A, Cox D , et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823.
doi: 10.1126/science.1231143
[15]   Lee J S, Grav L M, Lewis N E , et al. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives. Biotechnology Journal, 2015,10(7):979-994.
doi: 10.1002/biot.201500082 pmid: 26058577
[16]   Mali P, Yang L, Esvelt K M , et al. RNA-guided human genome engineering via Cas9. Science, 2013,339(6121):823-826.
doi: 10.1126/science.1232033 pmid: 3712628
[17]   Hockemeyed D, Soldner F, Beard C , et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nature Biotechnology, 2009,27(9):851-857.
doi: 10.1038/nbt.1562 pmid: 19680244
[18]   Zhou S T, Ding XF, Yang L , et al. Discover stable expression hot spot in genome of Chinese Hasmter ovary cells using lentivirus based random integration method. [2018-11-14].
[19]   Stemmer M, Thumger T, Del S , et al. CCTop: An intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS One, 2015,10(4):e0124633.
doi: 10.1371/journal.pone.0124633 pmid: 4409221
[20]   Takata Y, Kondo S, Goda N , et al. Comparison of efficiency between FLPe and Cre for recombinase-mediated cassette exchange in vitro and in adenovirus vector production. Genes to Cells, 2011,16(7):765-777.
doi: 10.1111/j.1365-2443.2011.01526.x pmid: 21707874
[21]   Xu D, Chen Y, Jin J . Effect of signal peptide on the expression and secretion of hepatocyte growth factor in CHO. Chinese Journal of Cell Biology, 2016,38(12):1-7.
[22]   Gilbert L A, Horlbeck M A, Adamson B , et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 2014,159(3):647-661.
doi: 10.1016/j.cell.2014.09.029 pmid: 25307932
[23]   Shalem O, Sanjana N E, Hartenian E , et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science, 2014,343(6166):84-87.
doi: 10.1126/science.1247005
[24]   Wang T, Wei J J, Sabatini D M , et al. Genetic screens in human cells using the CRISPR-Cas9 system. Science, 2014,343(6166):80-84.
doi: 10.1126/science.1246981
[1] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[2] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[3] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[4] DUAN Yang-yang,ZHANG Feng-ting,CHENG Jiang,SHI Jin,YANG Juan,LI Hai-ning. The Effect of SIRT2 on Apoptosis and Mitochondrial Function in Parkinson’s Disease Model Cells Induced by MPP+[J]. China Biotechnology, 2021, 41(4): 1-8.
[5] CAI Run-ze,WANG Zheng-bo,CHEN Yong-chang. Research Progress of Mecp2 Affecting Metabolic Function in Rett Syndrome[J]. China Biotechnology, 2021, 41(2/3): 89-97.
[6] Chen-yang ZHANG,Chang-chun HEI,Shi-lin YUAN,Yu-jia ZHOU,Mei-ling CAO,Yi-xin QIN,Xiao YANG. SIRT3 Inhibits Mitophagy and Alleviates Neuronal Oxygen Deprivation/Reoxygenation Injury Aggravated by High Glucose[J]. China Biotechnology, 2021, 41(11): 1-13.
[7] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[8] XU Xiao, CHENG Chi, YUAN Kai, XUE Chuang. Research Progress of Cellulase Production in Trichoderma reesei[J]. China Biotechnology, 2021, 41(1): 52-61.
[9] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[10] HU Yi-bo,PI Chang-yu,ZHANG Zhe,XIANG Bo-yu,XIA Li-qiu. Recent Advances in Protein Expression System of Filamentous Fungi[J]. China Biotechnology, 2020, 40(5): 94-104.
[11] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[12] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[13] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[14] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[15] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.