Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (7): 50-57    DOI: 10.13523/j.cb.20180707
    
The Optimization of Self-deleting Lentiviral Vector Carrying Human β-globin Gene and Promoter
Ya-li HAN1,Guang-heng YANG1,2,Yan-wen CHEN1,Xiu-li GONG1,Jing-zhi ZHANG1,2,**()
1 Shanghai Institute of Medical Genetics, Children’s Hospital of Shanghai, Children’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 20040, China;
2 Key Laboratory of Embryo Molecular Biology, Ministry of Health, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 20040, China
Download: HTML   PDF(1012KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: Optimization of previous developed self-deleting lentiviral vector carrying human β-globin gene and promoter in terms of preparation titles and transgene expressing efficacy. Methods: Based on the comparison of the predictions of three on line promoter prediction softwares; three self-deleting lentiviral vectors carrying three different lengths of β-globin promoters with gene were constructed. The optimization was carried out in terms of preparation titles and transgene expressing efficacy. The optimized LVV was used to transduce murine -thalassemia iPSC;and resulted cells were used to generate chimeric mice. RT-PCR and Wright Giemsa staining were then carried out on the mice blood. Results: The viral particles prepared by the optimized LVV principally have no difference comparing with their parental virus, FUGW. The functional expression of normal spliced human β-globin gene was detected in the chimeric mice. And the morphologically normal of erythrocytes was observed. Conclusion: An optimized self-deletion lentiviral vector, FCB-P265, was made.



Key wordsβ-thalassemia      Self-deleted lentivirus vector      Optimization      Gene therapy     
Received: 22 March 2018      Published: 13 August 2018
ZTFLH:  Q819  
Corresponding Authors: Jing-zhi ZHANG     E-mail: jzhang38@hotmail.com
Cite this article:

Ya-li HAN,Guang-heng YANG,Yan-wen CHEN,Xiu-li GONG,Jing-zhi ZHANG. The Optimization of Self-deleting Lentiviral Vector Carrying Human β-globin Gene and Promoter. China Biotechnology, 2018, 38(7): 50-57.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180707     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I7/50

Fig.1 Schematic presentation the mechanism of the self-deleted lentiviral vector
Primer Primer-sequence(5' - 3')
Promoter-U3-F ATCGATACCGTCGACCTCGAGACCTAGAAAAACATGGAGCA
P265-U3-R ATTTGGAATCACAGCATCGTCGACCGTGTAACAAGCGGGT
P675-U3-R CTGTGCATTAGTTACATCGTCGACCGTGTAACAAGCGGGT
P265-U3-F TACACGGTCGACGATGCTGTGATTCCAAATATTACGTAAA
P675-U3-F TACACGGTCGACGATACTAATGCACAGAGCACATTGATTT
BsrgI-IN-R ATTTGGTCAATATGTGTACAACCCTGTTACTTATCCCCTTCCTAT
PmeI-LTR-R CTAGAAGGCACAGTCGAGGC
SY-F TGTTCCCTAAGTCCAACTACTAAAC
SY-R TCTCGACGCAGCGAGTAGTGAAGAG
SY-actin-F GGACTTCGAGCAGGAGATGG
SY-actin-R GCACCGTGTTGGCGTAGAGG
Globin-QF CCCAGAGGTTCTTTGAGT
SLTR2-R AGGTTCTCGAATCAAGTCGGTT
MG-F CTCGGTGCCTTTAGTGATGG
MG-R AGCCTGCACTGGTGGGGTGAA
Table 1 List of primers
在线启动子生物信息学分析工具 启动子预测结果
Promoter 2.0 Prediction Server
(http://www.cbs.dtu.dk/services/Promoter/)
-272
Neural Network Promoter Prediction(NNPP)
(http://www.fruitfly.org/seq_tools/promoter.html)
-585~(-535)
-563~(-513)
Promoter scan
(https://www-bimas.cit.nih.gov/molbio/proscan/)
-587~(-336)
-261~(-11)
Table 2 Different bioinformatic prediction of human β-globin promoter
Fig.2 Bioinformatic prediction of human β-globin promoter
Fig.3 Schematic presentations of three different lengths of -globin promoter driven -globin expressing lentiviral vector(a) FCB-P1 700 (b)FCB-P675 (c) FCB-P265 P: β-globin promoter ; E:Exon; IN:Intron ; ▽:With a 372bp deletion in IVS2
Fig.4 Schematic presentations of the three pro-LVV after self-deletion (a) pro-1 700 (b)pro-675 (c)pro-265 P: β-globin promoter;E:Exon;IN:Intron; ▽: With a 372bp deletion in IVS2
Fig.5 The comparison of the expression among the three pro-LVV vectors after transfectionn=3, P=0.000 01<0.05
Fig.6 The comparison of the viral particles produced by above pseudo virusesn=3, P>0.05
Fig.7 Murine β-thalassaemia iPSC was successfully transduced with the FCB-P265 N: Negative control; P: Positive control;Number 1 to 12 are the iPSC clones, with which number 10 is the positive clone transduced with the FCB-265
Fig.8 The expression of the exogenous gene in the blood of the chimeric model mouse and the morphology of its red blood cells (a) RT-PCR analysis the expression of the exogenous gene in the blood of the chimeric model mouse S: The blood sample of the Chimeric model mouse; P:Positive control,normal human peripheral blood; N: Negative control,the peripheral blood sample from the β-654 model mouse;WT:The peripheral blood sample from the wild-type mouse (b) Blood smear and Wright Giemsa staining for observing the morphology of the red blood cells of the transgenic model mouse C: The blood sample of the Chimeric model mouse; 654: The peripheral blood sample of the β-654 model mouse;WT:The peripheral blood sample of the wild-type mouse
[1]   Dreuzy E D, Bhukhai K, Leboulch P , et al. Current and future alternative therapies for beta-thalassemia major. Biomedical Journal, 2016,39(1):24-38.
doi: 10.1016/j.bj.2015.10.001 pmid: 27105596
[2]   曾溢滔 . 人类血红蛋白.北京: 科学出版社, 2002: 162-170.
[2]   Zeng Y T. Human hemoglobin. Beijing: Science Press, 2002: 162-170.
[3]   Dong A, Breda L, Rivella S. Chapter 12 - gene therapy for hemoglobinopathies: progress and challenges// Translating gene therapy to the clinic. Amsterdam: Elsevier/Academic Press, 2015: 191-206.
doi: 10.1016/B978-0-12-800563-7.00012-9
[4]   Chang A H, Sadelain M . The genetic engineering of hematopoietic stem cells: the rise of lentiviral vectors, the conundrum of the ltr, and the promise of lineage-restricted vectors. Mol Ther, 2007,15(3):445-456.
doi: 10.1038/sj.mt.6300060
[5]   May C, Rivella S, Callegari J , et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature, 2000,406(6791):82-86.
doi: 10.1038/35017565
[6]   Cavazzana-Calvo M, Payen E, Negre O , et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature, 2010,467(7313):318-322.
doi: 10.1038/nature09328
[7]   Mansilla-Soto J, Riviere I, Boulad F , et al. Cell and gene therapy for the beta-thalassemias: advances and prospects. Hum Gene Ther, 2016,27(4):295-304.
doi: 10.1089/hum.2016.037 pmid: 4994056
[8]   Cesana D, Sgualdino J, Rudilosso L , et al. Whole transcriptome characterization of aberrant splicing events induced by lentiviral vector integrations. J Clin Invest, 2012,122(5):1667-1676.
doi: 10.1172/JCI62189
[9]   Fang Y, Gong X, Xu M , et al. A self-deletion lentiviral vector to reduce the risk of replication-competent virus formation. J Gene Med, 2013,15(2):102-112.
doi: 10.1002/jgm.2700 pmid: 23408520
[10]   Pasceri P, Pannell D, Xiumei W U , et al. 5'HS1 and the distal β-globin promoter functionally interact in single copy β-globin transgenic mice. Annals of the New York Academy of Sciences, 1998,850(1):377-381.
doi: 10.1111/j.1749-6632.1998.tb10497.x
[11]   Boulad F, Wang X, Qu J , et al. Safe mobilization of CD34 + cells in adults with β-thalassemia and validation of effective globin gene transfer for clinical investigation . Blood, 2014,123(10):1483-1486.
doi: 10.1182/blood-2013-06-507178
[12]   Negre O, Bartholomae C, Beuzard Y , et al. Preclinical evaluation of efficacy and safety of an improved lentiviral vector for the treatment of β-thalassemia and sickle cell disease. Current Gene Therapy, 2015,15(1):64-81.
[13]   Berg P E, Williams D M, Qian R L , et al. A common protein binds to two silencers 5' to the human β-globin gene. Nucleic Acids Research, 1989,17(21):8833-8852.
doi: 10.1093/nar/17.21.8833 pmid: 2587218
[14]   Leboulch P, Huang G M, Humphries R K , et al. Mutagenesis of retroviral vectors transducing human beta-globin gene and beta‐globin locus control region derivatives results in stable transmission of an active transcriptional structure. Embo Journal, 1994,13(13):3065-3076.
[1] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[2] WANG Xiao-jie,MENG Fan-qiang,ZHOU Li-bang,LV Feng-xia,BIE Xiao-mei,ZHAO Hai-zhen,LU Zhao-xin. Breeding of Brevibacillin Producing Strain by Genome Shuffling and Optimization of Culture Conditions[J]. China Biotechnology, 2021, 41(8): 42-51.
[3] JIANG Ji-zhe, PAN Hang, YUE Min, ZHANG Le. The Study of Worldwide Brucella canis of Phylogenetic Groups by Comparative Genomics-based Approaches[J]. China Biotechnology, 2020, 40(3): 38-47.
[4] XU Ying-yong. Current Status and Challenges of Gene Therapy Products[J]. China Biotechnology, 2020, 40(12): 95-103.
[5] CHEN Qing-yu,WANG Xian-zhong,ZHANG Jiao-jiao. Application of Gene Technology in the Treatment of Type 2 Diabetes Mellitus[J]. China Biotechnology, 2020, 40(11): 73-81.
[6] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[7] Long-bing YANG,Guo GUO,Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG. Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica[J]. China Biotechnology, 2019, 39(4): 24-31.
[8] Yue WANG,Jiang-hua LI,Guo-cheng DU,Long LIU. Molecular Modification of L-amino Acid Deaminase and Optimization of α-ketoglutaric Acid Production by Whole-cell Biocatalysis[J]. China Biotechnology, 2019, 39(3): 56-64.
[9] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[10] Hai-jiao JI,Wen-lei LI,Rui-jing Huang,Jian LI,Han-mei XU. Anti-CD20rh MAb Quality Evaluation and Monoclonal Cell Line Screening[J]. China Biotechnology, 2018, 38(8): 34-40.
[11] Li ZHANG,Juan DING,Yu-cheng HAO,Cheng YE,Yang PU. Identification of a Marine Microalgae and Optimization of Protoplast Preparation[J]. China Biotechnology, 2018, 38(11): 42-50.
[12] Jing WANG,Xin XU,Xue-yu WANG,Lun-guang YAO,Yun-chao KAN,Jun JI. Research Progress of Loop-Mediated Isothermal Amplification in Food Safety Testing[J]. China Biotechnology, 2018, 38(11): 84-91.
[13] FENG Xue, GAO Xiang, NIU Chun-qing, LIU Yan. Construction of Pichia pastoris Expression Vector of Codon Optimized αB-crystallin Gene and Expression Optimization[J]. China Biotechnology, 2017, 37(7): 42-47.
[14] ZHANG Xu-hui, ZHANG Hong-nan, LI Yong, WANG Wen-qiang. Screening and Identification of Biocontrol Fungi against Didymella bryoniae and Optimization of Fermentation Conditions[J]. China Biotechnology, 2017, 37(5): 76-86.
[15] YAO Ren-hui, DONG Zhuo, LI Hui. Biotransformation of Androst-4-en-3,17-dione by Gibberella intermedia C2[J]. China Biotechnology, 2017, 37(3): 73-77.