Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (8): 42-51    DOI: 10.13523/j.cb.2103022
    
Breeding of Brevibacillin Producing Strain by Genome Shuffling and Optimization of Culture Conditions
WANG Xiao-jie,MENG Fan-qiang,ZHOU Li-bang,LV Feng-xia,BIE Xiao-mei,ZHAO Hai-zhen,LU Zhao-xin()
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Download: HTML   PDF(1959KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Brevibacillin, a broad-spectrum antimicrobial peptide, has shown strong antibacterial effect on bacteria and fungi, which can be regard as a kind of potential substitute for antibiotics. The wild strain Brevibacillus laterosporus was carried out the conventional mutagenesis techniques including UV mutagenesis, atmospheric and room temperature plasma mutagenesis and nitrosoguanidine mutagenesis to obtain four mutant strains. After two rounds of genome shuffling, strain F2-24 was obtained, and the yield of brevibacillin reached (340.5±16.35) μg/mL, which was 1.92-fold than that of wild strain fmb70. Furthermore, the fusion strain F2-24 possessed great stability after five generations. Finally, the fermentation process of fusion strain F2-24 was optimized. The results of the best carbon source, nitrogen source and inorganic salt ion was sucrose, beef extract and Mg 2+, respectively and the addition dose was 4%, 2% and 0.5%, respectively. The yield of brevibacillin was significantly enhanced via fermentation at 30℃ pH6.0 for 24 h, and meanwhile, the results suggested that the yield of brevibacillin was remarkably improved by a series of optimization and the yield reached (442.45±9.58) μg/mL, which was 2.50-fold than that produced by wild strain fmb70.



Key wordsBrevibacillin      Brevibacillus laterosporus      Genome shuffling      Medium optimization     
Received: 15 March 2021      Published: 31 August 2021
ZTFLH:  Q933  
Corresponding Authors: Zhao-xin LU     E-mail: fmb@njau.edu.cn
Cite this article:

WANG Xiao-jie,MENG Fan-qiang,ZHOU Li-bang,LV Feng-xia,BIE Xiao-mei,ZHAO Hai-zhen,LU Zhao-xin. Breeding of Brevibacillin Producing Strain by Genome Shuffling and Optimization of Culture Conditions. China Biotechnology, 2021, 41(8): 42-51.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2103022     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I8/42

时间/min 流动相A/% 流动相B/%
0 30 70
5 30 70
20 70 30
20.1 30 70
23 30 70
Table 1 HPLC detection program of brevibacillin
因素 水平
1 2 3
蔗糖/% 3 4 5
牛肉浸膏/% 2 3 4
镁离子/% 0.5 1 2
Table 2 Factors and levels of medium main ingredient in the orthogonal experiment
项目 紫外处理 ARTP处理 NTG处理
处理时间/浓度 15 s 10 s 0.1 mg/mL
正突变率/% 43 31 22
短杆菌素增加/% 59.9±8.7 61.2±4.7 38.5±7.6
Table 3 Conditions and positive mutation rates of physical and chemical mutagenesis
Fig.1 Effects of different conditions on protoplast formation and regeneration (a) Lysozyme concentration (b) Treatment temperature (c) Treatment time
Fig.2 Effect of UV irradiation and heat treatment on the survival rate of protoplasts
Fig.3 Effects of different conditions on protoplast fusion rate (a) Molecular weight of PEG (b) PEG6000 concentration (c) pH (d) Ca2+ concentration (e) Fusion time Different lowercase letters express significant difference under the condition of P<0.05
Fig.4 Selection of fusants in the first round of genome shuffling
菌株编号 发酵液中短杆菌素
含量/(μg/mL)
传代5代后发酵液中短
杆菌素含量/(μg/mL)
fmb70 186.7 166.2±9.7a
F2-24 399.6 347.7±14.2b
Table 4 Analysis of fusant yield stability in the second round of genome shuffling
Fig.5 Effect of different carbon sources on brevibacillin production (a) Types of carbon sources (b) Addition of sucrose Different lowercase letters express significant difference under the condition of P<0.05
Fig.6 Effect of different nitrogen sources on brevibacillin production (a) Types of nitrogen sources (b) Addition of beef extract Different lowercase letters express significant difference under the condition of P<0.05
Fig.7 Effect of different inorganic salt ions on brevibacillin production (a) Types of inorganic salt ions (b) Addition of Mg2+ Different lowercase letters express significant difference under the condition of P<0.05
试验编号 蔗糖 牛肉浸膏 Mg2+ 发酵液中短杆菌素含量/(μg/mL)
1 1 1 1 290.16±7.32
2 1 2 2 274.14±5.44
3 1 3 3 70.53±2.10
4 2 1 2 327.48±31.39
5 2 2 3 124.40±14.86
6 2 3 1 257.88±5.96
7 3 1 3 117.85±20.18
8 3 2 1 245.54±17.14
9 3 3 2 156.68±25.23
均值1 211.609 245.170 264.529
均值2 236.592 214.694 252.769
均值3 173.359 161.696 104.262
极差 63.233 83.474 160.267
Table 5 The results of medium main ingredient in the orthogonal experiment
Fig. 8 Effect of different fermentation conditions on brevibacillin production (a) Types of inorganic salt ions (b) Addition of Mg2+ Different lowercase letters express significant difference under the condition of P<0.05
Fig. 9 Fermentation validation of wild strain and fusant F2-24 (a) Verification of fermentation yield by HPLC (b) Bacteriostatic circle of fermentation broth Different lowercase letters express significant difference under the condition of P<0.05
[1]   刘萍萍, 闫艳春. 微生物农药研究进展. 山东农业科学, 2005, 37(2):78-80.
[1]   Liu P P, Yan Y C. Research progress of microbial pesticides. Shandong Agricultural Sciences, 2005, 37(2):78-80.
[2]   李明通, 孟凡强, 周立邦, 等. 生姜根腐病的病原菌鉴定及抗菌脂肽的防治效果. 南京农业大学学报, 2020, 43(6):1134-1142.
[2]   Li M T, Meng F Q, Zhou L B, et al. Identification of the pathogen of ginger root rot and the control effeciency of antifungal lipopeptides. Journal of Nanjing Agricultural University, 2020, 43(6):1134-1142.
[3]   Jiang H X, Wang X H, Xiao C Z, et al. Antifungal activity of Brevibacillus laterosporus JX-5 and characterization of its antifungal components. World Journal of Microbiology and Biotechnology, 2015, 31(10):1605-1618.
doi: 10.1007/s11274-015-1912-4
[4]   Prasanna L, Eijsink V G H, Meadow R, et al. EA novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential. Applied Microbiology and Biotechnology, 2013, 97(4):1601-1611.
doi: 10.1007/s00253-012-4019-y pmid: 22543421
[5]   马俊美. 侧孢短芽孢杆菌抗菌肽的结构及其特性研究. 石家庄: 河北科技大学, 2015.
[5]   Ma J M. Research on structure and characterization of antimicrobial peptides from Brevibacillus laterosporus. Shijiazhuang: Hebei University of Science and Technology, 2015.
[6]   Yang X, Huang E, Yuan C H, et al. Isolation and structural elucidation of brevibacillin, an antimicrobial lipopeptide from Brevibacillus laterosporus that combats drug-resistant gram-positive bacteria. Applied and Environmental Microbiology, 2016, 82(9):2763-2772.
doi: 10.1128/AEM.00315-16 pmid: 26921428
[7]   Yang X, Huang E, Yousef A E. Brevibacillin, a cationic lipopeptide that binds to lipoteichoic acid and subsequently disrupts cytoplasmic membrane of Staphylococcus aureus. Microbiological Research, 2017, 195:18-23.
doi: S0944-5013(16)30636-X pmid: 28024522
[8]   谭才邓, 朱美娟, 杜淑霞, 等. 抑菌试验中抑菌圈法的比较研究. 食品工业, 2016, 37(11):122-125.
[8]   Tan C D, Zhu M J, Du S X, et al. Study on the inhibition zone method in antimicrobial test. The Food Industry, 2016, 37(11):122-125.
[9]   Wu Y B, Zhou L B, Lu F X, et al. Discovery of a novel antimicrobial lipopeptide, brevibacillin V, from Brevibacillus laterosporus fmb70 and its application on the preservation of skim milk. Journal of Agricultural and Food Chemistry, 2019, 67(45):12452-12460.
doi: 10.1021/acs.jafc.9b04113
[10]   朱平, 李焕娄. 微生物原生质体灭活及其在育种中的应用. 国外医药(抗生素分册), 1990, 11(6):409-413.
[10]   Zhu P, Li H L. Inactivation of microbial protoplasts and its application in breeding. World Notes on Antibiotics, 1990, 11(6):409-413.
[11]   王娟娟, 贾彦军. 微生物原生质体融合方法的综述. 畜牧兽医科技信息, 2005(10):17-19.
[11]   Wang J J, Jia Y J. Review of microbial protoplast fusion methods. Scientific Information of Animal Husbamdry Veterinary Mecicine, 2005(10):17-19.
[12]   颜佳, 张立钊, 熊香元, 等. 微生物原生质体融合育种技术及其在发酵食品生产中的应用. 食品安全质量检测学报, 2020, 11(22):8455-8462.
[12]   Yan J, Zhang L Z, Xiong X Y, et al. Microbial protoplast fusion breeding technology and its application in fermented food production. Journal of Food Safety & Quality, 2020, 11(22):8455-8462.
[13]   Zhao P C, Xue Y, Gao W N, et al. Bacillaceae-derived peptide antibiotics since 2000. Peptides, 2018, 101:10-16.
doi: 10.1016/j.peptides.2017.12.018
[14]   Zhang Y X, Perry K, Vinci V A, et al. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 2002, 415(6872):644-646.
doi: 10.1038/415644a
[15]   高钰淇. 嗜酸乳杆菌NX2-6类细菌素高产菌株选育及应用的研究. 南京: 南京农业大学, 2015.
[15]   Gao Y Q. Study on breeding and application of high bacteriocin producing of Lactobacillus acidophilus NX2-6. Nanjing: Nanjing Agricultural University, 2015.
[16]   李伟. Bacillomycin D高产菌株的选育及其发酵工艺. 南京: 南京农业大学, 2018.
[16]   Li W. Breeding of high-yield strains of bacillomycin D and fermentation process. Nanjing: Nanjing Agricultural University, 2018.
[17]   贾锐. 高产杆菌肽地衣芽胞杆菌的鉴定与选育. 南京: 南京农业大学, 2016.
[17]   Jia R. Breeding of a high-yield strain from Bacillus licheniformis for bacitracin A. Nanjing: Nanjing Agricultural University, 2016.
[18]   Magocha T A, Zabed H, Yang M M, et al. Improvement of industrially important microbial strains by genome shuffling: Current status and future prospects. Bioresource Technology, 2018, 257:281-289.
doi: 10.1016/j.biortech.2018.02.118
[19]   赵君峰. 淀粉液化芽孢杆菌ES-2-4基因组改组提高脂肽产量及其突变菌株差异蛋白组学分析. 南京: 南京农业大学, 2012.
[19]   Zhao J F. Genome shuffling of Bacillus amyloliquefaciens ES-2-4for improving lipopeptide yield and differential proteomics analysis in its mutant strain. Nanjing: Nanjing Agricultural University, 2012.
[20]   Huang Q G, Zeng B D, Liang L, et al. Genome shuffling and high-throughput screening of Brevibacterium flavum MDV1 for enhanced L-valine production. World Journal of Microbiology & Biotechnology, 2018, 34(8):121.
doi: 10.1007/s11274-018-2502-z
[21]   王文静, 李丹毅, 谢磊睿, 等. 海洋来源真菌Ascotricha sp.J-M-5次级代谢化学多样性初探. 中国药学会海洋药物专业委员会第十一届海洋药物学术年会论文集. 海口: 2013: 71-74.
[21]   Wang W J, Li D Y, Xie L R, et al. Preliminary exploration into the chemo-diversity of secondary metabolism of a marine-derived fungus Ascotricha sp.ZJ-M-5. Proceedings of the 11th Annual Meeting of marine drugs, marine drug committee, Chinese Pharmaceutical Association. Haikou: 2013: 71-74
[22]   潘丽军, 付萍, 郑志, 等. 米根霉乙醇脱氢酶突变株的筛选及其锌镁离子的调控研究. 微生物学报, 2006, 46(4):586-590.
[22]   Pan L J, Fu P, Zheng Z, et al. Screening of a low alcohol dehydrogenase activity mutant of Rhizopus oryzae and the regulation of Zn2+and Mg2+. Acta Microbiologica Sinica, 2006, 46(4):586-590.
[1] SONG Jia-wen, TIAN Su, ZHANG Yu-ru, WANG Zhi-zhen, CHANG Zhong-yi, GAO Hong-liang, BU Guo-jian, JIN Ming-fei. Genome Shuffling Enhances Transglutaminase Production of Streptomyces mobaraensis[J]. China Biotechnology, 2017, 37(9): 105-111.
[2] HUANG Jun, WU Ren-zhi, CHEN Ying, LU Zhi-long, CHEN Xiao-ling, CHEN Dong, HUANG Ri-bo. Screening and Breeding of high Ethanol-producing Strains by Genome Shuffling[J]. China Biotechnology, 2014, 34(7): 56-62.
[3] XUE Zheng-lian, LIU Yang, WANG Zhou, MA Qi-ya, ZHAO Shi-guang, SU Yan-nan. Breeding of Esterifying Enzyme-producing Bacillus licheniformis by Genome Shuffling[J]. China Biotechnology, 2013, 33(8): 45-50.
[4] WANG Zhou, XUE Zheng-lian, MA Qi-ya, SU Yan-nan, ZHAO Shi-guang. Breeding of Phospholipase A1-producing Strains by Genome Shuffling[J]. China Biotechnology, 2013, 33(10): 59-66.
[5] ZHENG Lian-bao, QIU Juan-ping. The Application of Genome Shuffling in Developing New Metabolites[J]. China Biotechnology, 2012, 32(03): 100-105.
[6] . The applications and progress of genome shuffling[J]. China Biotechnology, 2010, 30(07): 0-0.
[7] MAO Yu, WANG Dan, LI Jiang, GENG Jian-Min, HUANG Tie-Bin. Protoplast Preparation and Regeneration of Actinobacillus succinogenes[J]. China Biotechnology, 2010, 30(06): 103-108.
[8] MAO Yu, WANG Dan, HUANG Tie-Bin, GENG Jian-Min. Application of Microbial Protoplast Fusion Technology in Genetic Breeding[J]. China Biotechnology, 2010, 30(01): 93-97.
[9] . Whole genome shuffling to enhance activity of fibrinolytic enzyme-producing strains[J]. China Biotechnology, 2007, 27(10): 39-43.