Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (3): 56-64    DOI: 10.13523/j.cb.20190308
    
Molecular Modification of L-amino Acid Deaminase and Optimization of α-ketoglutaric Acid Production by Whole-cell Biocatalysis
Yue WANG,Jiang-hua LI,Guo-cheng DU,Long LIU()
Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(1673KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Alpha-ketoglutaric acid (α-KG), which is a keto acid product deaminated by glutamic acid, is widely used in food, medicine, fine chemicals and other fields as an important organic acid. To improve the yeild and the efficiency of biotransformation for the synthesis of α-ketoglutaric acid. First, by optimizing the conditions of whole-cell biocatalyst preparation and whole-cell biocatalysis conditions. Optimization conditions include the temperature, pH, inducer concentration, induction time in the whole-cell biocatalyst preparation process and the temperature, pH, biocatalyst concentration, biocatalytic time in the whole-cell biocatalysis process. Determine the optimal conditions of each item by detecting the amount of product α-KG. After the conditions were optimized, the maximum yield was increased by 54.9 % and the molar conversion was 39.6 %. Secondly, the directed evolution of L-amino acid deaminase by site-directed mutagenesis increased its catalytic ability. Through multiple mutations, screening, the yield of α-ketoglutaric acid biocatalytic synthesized by monosodium glutamate with optimal mutant E.coli BL21-pET-20b (+)-pm1152 was 100.9 g/L, and the molar conversion rate was 64.7 %, an increase of 66.3% compared to the control strain. The maximal yield and molar conversion of L-glutamic acid to α-KG was reached under the following optimal conditions: 20 g/L whole-cell biocatalyst, 30 ℃, pH 6.0, and 60-h biocatalysis, strain: E.coli BL21-pET-20b (+)-pm1152. The results showed that the conditional optimization and saturation mutation could effectively increase the whole-cell biocatalyst of recombinant E. coli to synthesize α-ketoglutaric acid.



Key wordsL-amino      acid      deaminase      Condition      optimization      Site-saturation      mutagenesis      Whole-cell      biocatalyst     
Received: 06 September 2018      Published: 12 April 2019
ZTFLH:  Q819  
Corresponding Authors: Long LIU     E-mail: longliu@jiangnan.edu.cn
Cite this article:

Yue WANG,Jiang-hua LI,Guo-cheng DU,Long LIU. Molecular Modification of L-amino Acid Deaminase and Optimization of α-ketoglutaric Acid Production by Whole-cell Biocatalysis. China Biotechnology, 2019, 39(3): 56-64.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190308     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I3/56

引物名称 碱基序列(5'-3')
I100-F NNNATTAGTTACCAAACATCACCAGAAATCTTCCC
I100-R TTGGCTGTATGCACGGCCTGATTG
G206-F NNNACACCTGCACTCGCTCGTTATG
G206-R TGTTTCAGGATCAACAGAGCCTGAAT
G235-F NNNAAAATCTCTGATGTGGTGAGTGAG
G235-R ACCCGCAGTTTCAATACCTCTTAC
P272-F NNNACGCTCAATGTATATCTATCACAACAACGT
P272-R GATATCAATACCCATATTGCCCATAAATAAACGTGAC
V276-F NNNTATCTATCACAACAACGTGTCTCAGGG
V276-R ATTGAGCGTTGGGATATCAATACCCATATTGC
L278-F NNNTCACAACAACGTGTCTCAGGG
L278-R ATATACATTGAGCGTTGGGATATCAATACCC
V283-F NNNTCAGGGGTTCCTGGTGCACCAC
V283-R ACGTTGTTGTGATAGATATACATTGAGCGTTG
E340-F NNNTTACCGTTGGAATTCTCTATTGGTG
E340-R TCCGCCACCTAATAAGTGCATAAATTTAGG
L363-F NNNGATGAAAAAACACCATTCGAACAATTCCG
L363-R ATTCCAAGAGGTCGGCATTTTAAATG
N416-F NNNGAATTACCTATCATTTCTGAGGTCAAAGAATAC
N416-R AAATGTTGGACTCACAACGGCACCCCAAC
Table 1 Primer for site-saturation mutagenesis
Fig.1 The optimization of induction temperature
Fig. 2 The optimization of expression cell age and the OD600 value at the end of culture
Fig.3 The optimization of induction time
Fig.4 The optimization of IPTG concentration and the OD600 value at the end of culture
Fig.5 Effects of seed culture time on alpha-ketoglutarate production
Fig. 6 Effects of temperature on alpha-ketoglutarate production
Fig.7 Effects of pH on alpha-ketoglutarate production
Fig.8 Effects of biocatalytic time on alpha-ketoglutarate production
Fig.9 Effects of DCW on alpha-ketoglutarate production
Fig.10 The docking result of L-amino acid deaminase and L-glutamic acid (a) The docking position between L-glutamic acid and L-amino acid deaminase (b) FAD active site (c) Mutation site selection (d) L-amino acid desminase and L-glutamic acid action position
Fig.11 Positive result of site-directed mutation
Fig.12 Positive result of multi-site compound mutation
Fig.13 Effects of catalytic conditions on alpha-ketoglutarate production after mutation (a) Effects of temperature on alpha-ketoglutarate production (b) Effects of pH on alpha-ketoglutarate production (c) Effects of DCW on alpha-ketoglutarate production
[1]   Matzi V, Lindenmann J, Muench A , et al. The impact of preoperative micronutrient supplementation in lung surgery. A prospective randomized trial of oral supplementation of combined alpha-ketoglutaric acid and 5-hydroxymethylfurfural. European Journal of Cardio-thoracic Surgery, 2007,32(5):776-782.
doi: 10.1016/j.ejcts.2007.07.016 pmid: 17768058
[2]   Sauer M, Porro D, Mattanovich D , et al. Microbial production of organic acids: Expanding the markets. Trends in Biotechnology, 2008,26(2):100-108.
doi: 10.1016/j.tibtech.2007.11.006 pmid: 18191255
[3]   Jinap S, Hajeb P . Glutamate. its applications in food and contribution to health. Appetite, 2010,55(1):1-10.
doi: 10.1016/j.appet.2010.05.002 pmid: 20470841
[4]   Stottmeister U, Aurich A, Wilde H , et al. White biotechnology for green chemistry: Fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses. Journal of Industrial Microbiology Biotechnology, 2005,32(11-12):651-664.
doi: 10.1007/s10295-005-0254-x
[5]   牛盼清, 张震宇, 刘立明 . 酶法转化L-谷氨酸生产α-酮戊二酸. 生物工程学报, 2014,30(8):1318-1322.
[5]   Niu P Q, Zhang Z Y, Liu L M . Enzymatic production of α-ketoglutaric acid by L-glutamate oxidase from L-glutamic acid. Chinese Journal of Biotechnology, 2014,30(8):1318-1322.
[6]   Liu L, Hossain G S, Shin H D , et al. One-step production of alpha-ketoglutaric acid from glutamic acid with an engineered L-amino acid deaminase from Proteus mirabilis. Journal of Biotechnology, 2013,164(1):97-104.
doi: 10.1016/j.jbiotec.2013.01.005 pmid: 23333917
[7]   Hossain G S, Li J H, Shin H D , et al. Improved production of alpha-ketoglutaric acid (alpha-KG) by a Bacillus subtilis whole-cell biocatalyst via engineering of L-amino acid deaminase and deletion of the alpha-KG utilization pathway. Journal of Biotechnology, 2014,187:71-77.
doi: 10.1016/j.jbiotec.2014.07.431
[8]   Hou Y, Hossain G S, Li J H , et al. Production of phenylpyruvic acid from L-phenylalanine using an L-amino acid deaminase from Proteus mirabilis: Comparison of enzymatic and whole-cell biotransformation approaches. Applied Microbiology and Biotechnology, 2015,99(20):8391-8402.
doi: 10.1007/s00253-015-6757-0
[9]   Li R X, Sakir H G, Li J H , et al. Rational molecular engineering ofl-amino acid deaminase for production of α-ketoisovaleric acid froml-valine by Escherichia coli. Rsc Advances, 2017,7(11):6615-6621.
doi: 10.1039/C6RA26972A
[10]   Song Y, Li J H, Shin H D , et al. One-step biosynthesis of alpha-ketoisocaproate from L-leucine by an Escherichia coli whole-cell biocatalyst expressing an L-amino acid deaminase from Proteus vulgaris. Scientific Reports, 2015,5:12614.
doi: 10.1038/srep12614
[11]   Carvalho de, CarlaC C R . Enzymatic and whole cell catalysis: Finding new strategies for old processes. Biotechnology Advances, 2011,29(1):75-83.
doi: 10.1016/j.biotechadv.2010.09.001 pmid: 20837129
[12]   Baek J O, Seo J W, Kwon O , et al. Expression and characterization of a second L-amino acid deaminase isolated from Proteus mirabilis in Escherichia coli. Journal of Basic Microbiology, 2011,51(2):129-135.
doi: 10.1002/jobm.201000086 pmid: 21298676
[13]   Faust A, Niefind K, Hummel W . The structure of a bacterial L-amino acid oxidase from Rhodococcus opacus gives new evidence for the hydride mechanism for dehydrogenation. Journal of Molecular Biology, 2007,367(1):234-248.
doi: 10.1016/j.jmb.2006.11.071 pmid: 17234209409300143002282013
[14]   Pelmont J, Arlaud G, Rossat A M . L-aminoacide oxydases des enveloppes de Proteus mirabilis: Propriétés générales. Biochimie, 1972,54(10):1359-1374.
doi: 10.1016/S0300-9084(72)80076-2
[15]   Hossain G S, Li J H, Shin H D , et al. Bioconversion of l-glutamic acid to α-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing L-amino acid deaminase from Proteus mirabilis. Journal of Biotechnology, 2014,169(Complete):112-120.
doi: 10.1016/j.jbiotec.2013.10.026 pmid: 24172254
[16]   Motta P, Molla G, Pollegioni L , et al. Structure-function relationships in L-amino acid deaminase, a flavoprotein belonging to a novel class of biotechnologically relevant enzymes. Journal of Biological Chemistry, 2016,291(20):10457-10475.
doi: 10.1074/jbc.M115.703819 pmid: 27022028
[17]   宋阳 . L-氨基酸脱氨酶分子改造及生物合成α-酮异己酸. 无锡: 江南大学, 2018.
[17]   Song Y . Molecular modification of L-amino acid deaminase and biosynthesis of α-ketoisocaproate. Wuxi: Jiangnan University, 2018.
[1] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[2] WANG Xiao-jie,MENG Fan-qiang,ZHOU Li-bang,LV Feng-xia,BIE Xiao-mei,ZHAO Hai-zhen,LU Zhao-xin. Breeding of Brevibacillin Producing Strain by Genome Shuffling and Optimization of Culture Conditions[J]. China Biotechnology, 2021, 41(8): 42-51.
[3] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[4] Bao-qi FENG,Jiao FENG,Miao ZHANG,Yang LIU,Rui CAO,Han-zhi YIN,Feng-xian QI,Zi-long LI,Shou-liang YIN. Screening of High Avermectin-producing Strains via Tn5 Transposon Mediated Mutagenesis[J]. China Biotechnology, 2021, 41(7): 32-41.
[5] LI Kai-xiu,SI Wei. Progress in the Treatment of Inflammatory Bowel Diseases by Exosomes Derived from Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(7): 66-73.
[6] LIU Shao-jin,FENG Xue-jiao,WANG Jun-shu,XIAO Zheng-qiang,CHENG Ping-sheng. Market Analysis and Countermeasures of Nucleic Acid Drugs in China[J]. China Biotechnology, 2021, 41(7): 99-109.
[7] TANG Meng-tong,WANG Zhao-guan,LI Jiao-jiao,QI Hao. Application of Terminal Deoxynucleotidyl Transferase in Biosensors and Nucleic Acid Synthesis[J]. China Biotechnology, 2021, 41(5): 51-64.
[8] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[9] LIAO Dan-ni,ZHANG Zhao-yang,JIN Jin,LI Xia,JIA Bin. Progress in the Study of Microbial tRNA and Genetic Codon System Related Applications[J]. China Biotechnology, 2021, 41(4): 64-73.
[10] SHI Zhong-lin,CUI Jun-sheng,YANG Ke,HU An-zhong,LI Ya-nan,LIU Yong,DNEG Guo-qing,ZHU Can-can,ZHU Ling. Research Progress in Isothermal Amplification of Nucleic Acid Based on Microfluidic Chip[J]. China Biotechnology, 2021, 41(2/3): 116-128.
[11] FAN Yan,YANG Miao,XUE Song. High-throughput Screening of Benzoate Decarboxylase for High-efficiency Fixation of CO2 Based on Spectroscopy-image Grayscale Method[J]. China Biotechnology, 2021, 41(11): 55-63.
[12] CHEN Xin-jie,QIAN Zhi-lan,LIU Qi,ZHAO Qing,ZHANG Yuan-xing,CAI Meng-hao. Modification of Aromatic Amino Acid Synthetic Pathway in Pichia pastoris to Produce Cinnamic Acid and ρ-Coumaric Acid[J]. China Biotechnology, 2021, 41(10): 52-61.
[13] ZHU Ya-xin, DUAN Yan-ting, GAO Yu-hao, WANG Ji-yue, ZHANG Xiao-mei, ZHANG Xiao-juan, XU Guo-qiang, SHI Jin-song, XU Zheng-hong. Synthesis and Regulation of Poly-γ-glutamic Acid with Different D/L Monomer Ratios[J]. China Biotechnology, 2021, 41(1): 1-11.
[14] WU Hong-xuan, YANG Jin-hua, SHEN Pei-jie, LI Qing-chen, HUANG Jian-zhong, QI Feng. Study on the Production of Indole-3-acetic Acid Using E. coli Cell Factory[J]. China Biotechnology, 2021, 41(1): 12-19.
[15] DENG Ting-shan,WU Guo-gan,SUN Yu,TANG Xue-ming. Advances in Biosynthesis of Phenyllactic Acid[J]. China Biotechnology, 2020, 40(9): 62-68.