Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (8): 34-40    DOI: 10.13523/j.cb.20180805
    
Anti-CD20rh MAb Quality Evaluation and Monoclonal Cell Line Screening
Hai-jiao JI1,Wen-lei LI2,Rui-jing Huang2,Jian LI2,Han-mei XU1,*()
1. China Pharmaceutical University, Nanjing 211100, China
2. Shanghai Tasly Pharmaceutical Co. LTD., Shanghai 201203, China
Download: HTML   PDF(1463KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To screen high expression monoclonal cell lines and optimize the production and quality of Anti-CD20rh MAb. Method: Screen high expression monoclonal cell lines by finite dilution method, and evaluated the yield of monoclonal cell lines by double-sandwich ELISA. In order to screen the best cell culture program, two to three cells were picked based on the cells’ growth state, yield, viability, and so on. The result were evaluated by the sugar type, the isoelectric point, the purity and the distribution of the acid and alkali base peak. Results: The production of CHOS cells tripled after a series of optimization, increased from nearly 500mg/L to 2 290mg/L. After the optimization of culture program, the purity of the target protein reached up to 97.48%, and the distribution of the acid and alkali base peak looks more close to the ideal state. Conclusion: The production and quality of the target antibody were optimized by cloning and culture optimization, these results are of great significance to the later experimental research and industrial production.



Key wordsMonoclonal      Medium optimization      Quality evaluation     
Received: 01 March 2018      Published: 11 September 2018
ZTFLH:  Q813  
Corresponding Authors: Han-mei XU     E-mail: 1037714870@qq.com
Cite this article:

Hai-jiao JI,Wen-lei LI,Rui-jing Huang,Jian LI,Han-mei XU. Anti-CD20rh MAb Quality Evaluation and Monoclonal Cell Line Screening. China Biotechnology, 2018, 38(8): 34-40.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180805     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I8/34

Fig.1 Growth status and antibody expression of monoclonal cell lines (a) Growth status of monoclonal cell lines (b) Antibody expression of monoclonal cell lines; A-S are the 19 monoclonal cell lines that has been screened
Fig.2 Growth status and antibody expression of monoclonal cell lines after optimization (a) Growth status of monoclonal cell lines after optimization (b) Antibody expression of monoclonal cell lines after optimization; A、B are different cells; 1~11 are different cell culture and flow plus scheme
样品编号 发酵液体积(ml) UV(OD) 浓度(mg/ml) 捕获体积(ml) 抗体蛋白产量(mg)
A1 35 0.6707 5.047 6.45 32.55
A4 30 0.8178 6.224 5.7 35.48
B1 35 1.2092 9.674 6.25 60.46
B4 30 0.9489 7.273 5.00 36.37
Table 1 The concentration of ProteinA purified intermediate
Fig.3 SDS-PAGE electrophoresis map (a) SDS-PAGE reduction electrophoresis map (b) SDS-PAGE non-reduction electrophoresis map; A、B are different cells; 1、4 are different cell culture and flow plus schemes
Fig.4 The SEC-HPLC chromatograms (a) SEC-HPLC chromatograms of Sample A1 (b) SEC-HPLC chromatograms of Sample A4 (c) SEC-HPLC chromatograms of Sample B1 (d) SEC-HPLC chromatograms of Sample B4; A、B are different cells; 1、4 are different cell culture and flow plus schemes
样品 酸峰
(%)
主峰
(%)
碱峰
(%)
主峰+碱
峰(%)
等电点
A1 44.83 21.01 34.16 55.17 8.274
A4 68.57 18.79 12.63 31.42 8.332
B1 48.04 20.48 31.48 51.96 8.354
B4 55.14 28.65 16.22 44.87 8.377
Table2 Results of CIEF
Fig.5 Chromatogram of glycosylation analysis of HPLC-FLR
峰4 峰5 峰7 峰8 峰9,
10
峰17
样品 Man5 G0 G0F G1 G1F G2F
A1 1.37 1.84 61.24 2.48 25.42 3.32
A4 2.71 1.89 51.93 4.7 28.28 6.97
B1 0.73 1.47 57.39 2.3 30.04 4.82
B4 1.79 2.52 56.79 3.56 26.46 6.42
Mean 1.65 1.93 56.84 3.26 27.55 5.38
Std.Dev 0.83 0.44 3.82 1.11 2.04 1.65
CV(%) 50.32 22.57 6.72 34.04 7.40 30.65
Table 3 Results of glycosylation analysis of HPLC-FLR
[1]   Zhang J D, Zhang G Y, Shi M L , et al. Progress of CD20’s biological function. Lett Biotechnology, 2009,9(20):227-229.
[2]   Kang H J, Lee S S, Kim K M , et al. Radioimmunotherapy with (131) I-rituximab for patients with relapsed/refractory B-cell non-Hodgkin’s lymphoma(NHL). Asia-Pacific Journal of Clinical Oncology, 2011,7(2):136-145.
doi: 10.1111/ajco.2011.7.issue-2
[3]   邓承莲, 邹佳, 宋海峰 . 抗CD20治疗性单克隆抗体的研究进展. 药学学报, 2013,48(10):1515-1520.
[3]   Deng C L, Zou J, Song H F . Advances in anti-CD20 therapeutic monoclonal antibodies. Journal of Pharmaceutical Sciences, 2013,48(10):1515-1520.
[4]   Hausmann R, Chudobová I, Spiegel H , et al. Proteomic analysis of CHO cell lines producing high and low quantities of a recombinant antibody before and after selection with methotrexate. Journal of Biotechnology, 2018,265(10):65-69.
doi: 10.1016/j.jbiotec.2017.11.008
[5]   Cacciatore J J, Chasin L A, Leonard E F . Gene amplification and vector engineering to achieve rapid and high-level therapeutic protein production using the Dhfr-based CHO cell selection system. Biotechnology Advances, 2010,28(6):673-681.
doi: 10.1016/j.biotechadv.2010.04.003
[6]   宋小红, 于婷, 李冰 , 等. 促进CHO 细胞生长及其产物hNGF 表达的培养条件的初步研究. 中国生物工程杂志, 2010,30(4):13-19.
doi: Q343.6
[6]   Song X H, Yu T, Li B , et al. To promote the development of CHO cell growth and its Hngf expression. China Biotechnology, 2010,30(4):13-19.
doi: Q343.6
[7]   Beck A, Wagner Rousset E, Ayoub D , et al. Characterization of therapeutic antibodies and related products. Biotechnology Program, 2013,85(2):715-736.
doi: 10.1021/ac3032355 pmid: 23134362
[8]   衣常红, 高春芳 . IgG糖基化修饰及其意义研究进展. 中国免疫学杂志, 2010,26(11):1051-1056.
[8]   Yi C H, Gao C F . The glycosylation of IgG and its significance of the research about glycosylation. Journal of Chinese Immunology, 2010,26(11):1051-1056.
[9]   Takaha S M, Kuroki Y, Ohtsubo K , et al . Core fucose and bisecting GLcNAc , the direct modifiers of the N-glycan core: Their functions and target proteins. Carbohydrate Research, 2009,344(12):1387-1390.
doi: 10.1016/j.carres.2009.04.031
[1] WANG Xiao-jie,MENG Fan-qiang,ZHOU Li-bang,LV Feng-xia,BIE Xiao-mei,ZHAO Hai-zhen,LU Zhao-xin. Breeding of Brevibacillin Producing Strain by Genome Shuffling and Optimization of Culture Conditions[J]. China Biotechnology, 2021, 41(8): 42-51.
[2] ZHAO Yan-shu,ZHANG Jin-hua,SONG Hao. Advances in Production of Monoclonal Antibody and Antibody Fragments in Engineered Prokaryotes and Yeast[J]. China Biotechnology, 2020, 40(8): 74-83.
[3] WANG Meng,SONG Hui-ru,CHENG Yu-jie,WANG Yi,YANG Bo,HU Zheng. Accurate Detection of Streptococcus pneumoniae by Using Ribosomal Protein L7 / L12 as Molecular Marker[J]. China Biotechnology, 2020, 40(4): 34-41.
[4] JIANG Yi-fan,JIA Yu,Wang Long,WANG Zhi-ming. The Glycosylation Design and Control of Monoclonal Antibody by Cell Culture[J]. China Biotechnology, 2019, 39(8): 95-103.
[5] Yi-fan JIANG,Jing DONG,Jing-shuang WEI. Monoclone Selection and Monoclonal Verification of Engineering Cell Lines[J]. China Biotechnology, 2019, 39(4): 101-105.
[6] Qian GAO,Hong JIANG,Mao YE,Wen-juan GUO. Current Status and Trend of R&D of Monoclonal Antibodies[J]. China Biotechnology, 2019, 39(3): 111-119.
[7] LIU Guo-fang,LIU Xiao-zhi,GAO Jian,WANG Zhi-ming. Effects of Host Cell Residual Proteins on the Quality and Their Quality Control of Monoclonal Antibody[J]. China Biotechnology, 2019, 39(10): 105-110.
[8] Jing-wen XU,Xue-mei ZHANG,Zhong-xiang WU,Wen-bing ZHU,Xi JIANG,Wei GONG,Li-wei YAN,Jie SONG,Hui LI,Shao-zhong DONG. Preparation and Identification of Monoclonal Antibodies Against Tree Shrews CD3ε[J]. China Biotechnology, 2018, 38(4): 54-62.
[9] Jian-wei REN,Jun LI,Shang-ze LI. Human CT55 Protein Prokaryotic Expression and Its Production of Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 1-8.
[10] Kai-yun MAO,Yue-lei FAN,Heng-zhe WANG,Da-ming CHEN. Market Competition Pattern of Global PD-1/PD-L1 Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 103-115.
[11] Jing-jing SUN,Wei-wei ZHOU,Lei-ming ZHOU,Qiao-hui ZHAO,Gui-lin LI. Advance in Large-Scale Culture of Hybridoma Cells in Vitro[J]. China Biotechnology, 2018, 38(10): 82-89.
[12] WANG Yun-long, ZHAO Er-xia, LI Yu-lin. Expression, Purification and Identification of Thymidine Kinase 1 Recombinant Protein[J]. China Biotechnology, 2017, 37(9): 15-22.
[13] ZHANG Jing-jing, LIU Ke-dong, QIAN Kai, MIAO Ya-na, CAI Yan-fei, LI Cheng-yuan, CHEN Yun, JIN Jian. Construction of CHO Cell Tably Expressing GLP-1 Analogue and Study of Its Culture Process[J]. China Biotechnology, 2017, 37(5): 52-58.
[14] WU Meng-ling, ZHOU Jia-wang, DU Jun. Development and Application of A Double Monoclonal Antibody Sandwich ELISA for the Assay of Nodal[J]. China Biotechnology, 2017, 37(3): 51-57.
[15] LI Min, WU Ri-wei. The Market Overview of Monoclonal Antibodies in Both Domestic and Abroad[J]. China Biotechnology, 2017, 37(3): 106-114.