Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (4): 24-31    DOI: 10.13523/j.cb.20190404
    
Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica
Long-bing YANG,Guo GUO(),Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG
School of Basic Medical Sciences, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education,Guizhou Medical University,Guiyang 550025, China
Download: HTML   PDF(1123KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To optimize the prokaryotic expression conditions of AMPs17 recombinant protein and analyze the antifungal activity of recombinant protein. Methods: Compare different induction temperatures (25℃, 28℃, 30℃, 32℃, 34℃), isopropylthio-β-D galactoside (IPTG) induced concentration (0.025mmol/L, 0.05mmol/L, 0.1mmol/L, 0.3mmol/L, 0.5mmol/L, 0.8mmol/L, 1.0mmol/L) and induction time (12h, 15h, 18h, 21h, 24h) on the expression of AMPs17 recombinant protein, screening the optimal expression conditions of AMPs17 recombinant protein. The recombinant protein was purified by nickel ion metal chelator affinity chromatography column, and the expression results were analyzed by SDS-PAGE electrophoresis and ImageJ image analysis system. The recombinant protein of AMPs17 was identified by Western blot and the purity of the recombinant protein was analyzed by high performance liquid chromatography(HPLC). The antifungal activity was detected by a micro liquid dilution method and a colony counting method. Results: The results showed that the expression of AMPs17 recombinant protein was the highest and the most stable when induced at 32℃ and IPTG concentration of 0.05mmol/L for 15h. The HPLC analysis showed that the purity of AMPs17 recombinant protein reached 90%. In addition, AMPs17 recombinant protein can effectively inhibit the growth of Candida albicans. Conclusion: The induction and expression conditions of antibacterial peptide AMPs17 were optimized, and proteins with high expression, stability and antifungal activity were obtained, which provided certain experimental basis for the follow-up antibacterial mechanism and application research.



Key wordsMusca domestica      AMPs17      Prokaryotic expression      Condition optimization      Antifungalactivity     
Received: 30 September 2018      Published: 08 May 2019
ZTFLH:  Q819  
Corresponding Authors: Guo GUO     E-mail: guoguojsc@163.com
Cite this article:

Long-bing YANG,Guo GUO,Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG. Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica. China Biotechnology, 2019, 39(4): 24-31.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190404     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I4/24

Fig.1 Amplification cDNA fragment of AMPs17 gene Lane M: DNA marker;Lane 1: AMPs17 PCR amplification product
Fig.2 Identification of recombinant plasmit pET-28a(+)-AMPs17 by endonuclease digestion Lane M:DNA marker; Lane 1: AMPs17 PCR amplification product; Lane 2: pET-28a(+)- AMPs17 recombinant plasmid double digestion; Lane 3: pET-28a(+)- AMPs17 recombinant plasmid
Fig.3 SDS-PAGE analysis of the expression of AMPs17 protein at different induction temperatures Lane M:DNA marker; Lane 1: AMPs17 PCR amplification product; Lane 2: pET-28a(+)- AMPs17 recombinant plasmid double digestion; Lane 3: pET-28a(+)- AMPs17 recombinant plasmid
Fig.4 SDS-PAGE analysis of the expression of AMPs17 protein at different induction times Lane M: Protein marker; Lanes 2, 4, 6, 8, 9: 24h, 21h, 18h, 15h, 12h induced expression products
Fig.5 SDS-PAGE analysis of the expression of AMPs17 protein at different IPTG concentrations Lane M: Protein marker; Lane 1: Expression product of whole bacterial solution induced by IPTG; Lanes 28: Adding final concentration of IPTG: 0.025mmol/L, 0.05mmol/L, 0.1mmol/L, 0.3mmol/L, 0.5mmol/L, 0.8mmol/L, 1.0mmol/L induced expression products
Fig.6 Induction expression and purification of AMPs17 protein Lane M: Protein marker; Lanes 16: AMPs17 recombinant protein,inclusion body lysate, uninduced expression product,supernatant after cell disruption,cell pellet after precipitation,induced expression product
Fig.7 Identification of AMPs17 protein by his-tag serum
Fig.8 Determination of purity of AMPs17 protein
菌株 MIC(μg/ml) MBC(μg/ml)
AMPs17 FLC AMPs17 FLC
C. albicans
ATCC10231
20 3.125 40 6.25
Table 1 Detection of antifungal activity of AMPs17 protein
Fig.9 Anti-C. albicans activity of AMPs17 protein
[1]   Martens E, Demain A L . The antibiotic resistance crisis, with a focus on the United States. Journal of Antibiotics, 2017,70(5):520-526.
doi: 10.1038/ja.2017.30 pmid: 28246379
[2]   Bernard E, Kreis B, Lotte A , et al. Tuberculosis in pregnancy. Clinics in Perinatology, 2016,4(2):880.
[3]   李秀云 . 盐酸氨溴索与氟康唑联合对抗耐药白色念珠菌的作用及机制研究. 济南:山东大学, 2017.
[3]   Li X Y . The effect and mechanism of ambroxol hydrochloride combined with fluconazole against Candida albicans. Jinan: Shandong University, 2017.
[4]   Yeaman M R, Büttner S, Thevissen K . Regulated cell death as a therapeutic target for novel antifungal peptides and biologics. [2018-06-28]. https://www.ncbi.nlm.nih.gov/pubmed/29854086/
[5]   Wang G, Li X, Wang Z . APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Research, 2015,44(D1):1087-1093.
doi: 10.1093/nar/gkv1278 pmid: 4702905
[6]   Kounatidis I, Ligoxygakis P . Drosophila as a model system to unravel the layers of innate immunity to infection. Open Biology, 2012,2(5):120075.
doi: 10.1098/rsob.120075 pmid: 3376734
[7]   Panteleev P V, Balandin S V, Ivanov V T , et al. A therapeutic potential of animal I 2-hairpin antimicrobial peptides . Current Medicinal Chemistry, 2017,24(17):1724-1746.
[8]   Park J, Kang H K, Choi M C , et al. Antibacterial activity and mechanism of action of analogues derived from the antimicrobial peptide mBjAMP1 isolated from Branchiostoma japonicum. Journal of Antimicrobial Chemotherapy, 2018,73(8):2059.
doi: 10.1093/jac/dky144 pmid: 29718248
[9]   Lyu Y, Yang Y, Lyu X , et al. Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida. Scientific Reports, 2016,6(2):27258.
doi: 10.1038/srep27258 pmid: 4890124
[10]   Zhou J, Kong L, Fang N , et al. Synthesis and functional characterization of MAF-1A peptide derived from the larvae of housefly, Musca domestica (Diptera: Muscidae). Journal of Medical Entomology, 2016,53(6):1467-1472.
doi: 10.1093/jme/tjw110 pmid: 27838615
[11]   Velden W J V D, Iersel T M V, Blijlevens N M , et al. Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11). BMC Medicine, 2009,7(1):44.
doi: 10.1186/1741-7015-7-44
[12]   Mehta S, Singh C, Plata K B , et al. Beta-lactams increase the antibacterial activity of daptomycin against clinical methicillin-resistant Staphylococcus aureus strains and prevent selection of daptomycin-resistant derivativ. Antimicrobial Agents and Chemotherapy. 2012,56(12):6192-6200.
[13]   Craik D J, Fairlie D P, Liras S , et al. The future of peptide-based drugs. Chemical Biology and Drug Design, 2013,81(1) : 136-147.
doi: 10.1111/cbdd.2012.81.issue-1
[14]   Matejuk A, Begum Q, Woodle M C . Peptide-based antifungal therapies against emerging infections. Drugs Future, 2010,35(3):197-231.
doi: 10.1358/dof.2010.035.03.1452077 pmid: 20495663
[15]   Scott J G, Liu N, Kristensen M , et al. A case for sequencing the genomeof Musca domestica (Diptera: Muscidae). Journal of Medical Entomology, 2009,46(2):175-182.
doi: 10.1603/033.046.0202
[16]   Ai H, Wang F, Zhang N , et al. Antiviral, immunomodulatory,and freeradical scavenging activities of a protein-enriched fraction from the larvae of the housefly,Musca domestica. Journal of Insect Science, 2013,13(112):112
[17]   陶如玉, 李妍, 马慧玲 , 等. 家蝇AMP17基因的克隆及其分子特性和表达模式研究. 中国病原生物学杂志, 2017,12(11):1079-1083.
[17]   Tao R Y, Li Y, Ma H L , et al. Cloning and molecular characteristics and expression patterns of AMP17 gene in Musca domestica. Chinese Journal of Pathogenic Biology, 2017,12(11):1079-1083.
[18]   王中原 . 可溶性人SUMO融合表达系统的研究. 长春:吉林大学, 2010.
[18]   Wang Z Y . Study on soluble human SUMO fusion expression system. Changchun:Jilin University, 2010.
[19]   Nuc P, Nuc K . Recombinant protein production in Escherichia coli. Postepy Biochem, 2006,52(4):448-456.
[20]   Gao Q, Zhao J M, Song L S , et al. Molecular cloning, characterization and expression ofheat shock protein 90 gene in the haemocytes of bay scallop Argopecten irradiants. Fish & Shellfish Immunology, 2008,24(4):379-385.
doi: 10.1016/j.fsi.2007.08.008 pmid: 18282767
[21]   Liang R, Liu X, Liu J , et al. A T7-expression system under temperature control could create temperature-sensitive phenotype of target gene in Escherichia coli. Journal of Microbiological Methods, 2007,68(3):497-506.
doi: 10.1016/j.mimet.2006.10.016 pmid: 17169451
[22]   解庭波 . 大肠杆菌表达系统的研究进展. 长江大学学报(自科版), 2008,5(3):77-82.
doi: 10.3969/j.issn.1673-1409-B.2008.03.034
[22]   Xie T B . Research progress of E. coli expression system. Journal of Yangtze University(Self version), 2008,5(3):77-82.
doi: 10.3969/j.issn.1673-1409-B.2008.03.034
[23]   彭传林 . 家蝇抗真菌肽MAF-1原核表达体系优化与活性分析. 贵阳:贵阳医学院, 2015.
[23]   Peng C L . Optimization and activity analysis of prokaryotic expression system of Musca domestica antifungal peptide MAF-1. Guiyang: Guiyang Medical College, 2015.
[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[3] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[4] ZHANG Xiao-hang,LI Yuan-yuan,JIA Min-xuan,GU Qi. Identification and Expression of Elastin-like Polypeptides[J]. China Biotechnology, 2020, 40(8): 33-40.
[5] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[6] LI Tong-tong,SONG Cai-ling,YANG Kai-yue,WANG Wen-jing,CHEN Hui-yu,LIU Ming. Preparation and Neutralization Activity of Anti-Canine Parvovirus VP2 Protein Single-chain Antibody[J]. China Biotechnology, 2020, 40(4): 10-16.
[7] CHEN Qiu-li,YANG Li-chao,LI Hui,WEN Sha,LI Gang,HE Min. Prokaryotic Expression,Purification and Preparation of Polyclonal Antibody of Human Nek2 Protein[J]. China Biotechnology, 2020, 40(3): 31-37.
[8] Ming-ying LI,Ren-jun WANG,Fun ZHANG,Yan CHI. The Prokaryotic Expression and Activity Analysis of the Fifth Domain of β2GPⅠ and Its Mutants or Short Peptide Fragments[J]. China Biotechnology, 2018, 38(8): 1-9.
[9] Xiao-lu GUO,Xiu-fang GONG,Jia-feng CHEN,Chen-xi DING,Dan HU,Xiu-zhen PAN,Chang-jun WANG. Gene Cloning, Expression and Identification of Phosphoglyceric Kinase of Streptococcus suis Serotype 2[J]. China Biotechnology, 2018, 38(3): 16-23.
[10] Yuan-qiao CHEN,Ding-pei LONG,Xiao-xue DOU,Run QI,Ai-chun ZHAO. Studies on the Protein Purification Ability of an ELP30-Tag in Prokaryotic Expression System[J]. China Biotechnology, 2018, 38(2): 54-60.
[11] HE Ya-nan,SUN Yu-liang,REN Ya-kun,LIANG Sheng-ying,YANG Fen,LIU Yan-li,LIN Jun-tang. The Construction and Functional Analysis of Staphylococcal Enterotoxin-like K and GFP Fusion Protein[J]. China Biotechnology, 2018, 38(12): 14-20.
[12] Jian-wei REN,Jun LI,Shang-ze LI. Human CT55 Protein Prokaryotic Expression and Its Production of Monoclonal Antibody[J]. China Biotechnology, 2018, 38(11): 1-8.
[13] ZHANG Xu-hui, ZHANG Hong-nan, LI Yong, WANG Wen-qiang. Screening and Identification of Biocontrol Fungi against Didymella bryoniae and Optimization of Fermentation Conditions[J]. China Biotechnology, 2017, 37(5): 76-86.
[14] SUN Wen-jia, YAO Yu-feng, YANG Xu, HUANG Wei-wei, LIU Cun-bao, LONG Qiong, CHU Xiao-jie, MA Yan-bing. Presentation of HPV 16L1 Peptide-based HBcAg Virus-like Particle and Induction of Specific Antibody[J]. China Biotechnology, 2017, 37(3): 58-64.
[15] TUERXUN Zulipiye, CAO Chun-bao, WEN Hao, DING Jian-bing, YIMITI Delixiati. Analysis of Gene Evolution, Protein Expression and Identification of Echinococcus granulosus EgG1Y162[J]. China Biotechnology, 2016, 36(4): 78-87.