Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (12): 95-103    DOI: 10.13523/j.cb.2008120
    
Current Status and Challenges of Gene Therapy Products
XU Ying-yong()
Zai Lab (Shanghai) Co., Ltd,Shanghai 201210,China
Download: HTML   PDF(3900KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Gene therapy is an approach treating certain diseases by transferring therapeutic genetic material to target cells. Gene therapy may provide the possibility of “one-time” cure paving the way as an important treatment armamentarium in near future. However, challenges subsuming long-term efficacy and safety data, accessibility, and regulatory policy forgene therapy need to be addressed. The review will start with basic concept and history, to discuss current status and future prospects of gene therapy.



Key wordsGene therapy      Virus vector      Chimeric antigen receptor T cells     
Received: 13 August 2020      Published: 14 January 2021
ZTFLH:  Q789  
Corresponding Authors: Ying-yong XU     E-mail: yingyongxu113@163.com
Cite this article:

XU Ying-yong. Current Status and Challenges of Gene Therapy Products. China Biotechnology, 2020, 40(12): 95-103.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2008120     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I12/95

Fig.1 Milestones in gene therapy history
年份 品名,药物 给药 载体 获批 适应证 注册临床研究 定价(地区)( ① 数据来源:https://www.evaluate.com/
)
2003 Gendicine, (Ad5RSV-p53) 瘤内 Ad NMPA 头颈部鳞癌 II期研究
(N=135)
3 380元人民币
一次(中国)
2012 Glybera
(Alipogene tiparvovec)
肌内 AAV1 EMA 脂蛋白脂酶缺乏 单臂研究
(N=27)
约122万美元
(德国)
2015 Imlygic(Talimogene
laherparepvec)
瘤内 HSV FDA/EMA 黑色素瘤 三期研究
(N=436)
平均5.4万美元/
年(美国)
2016 Strimvelis (CD34+细胞
ADA cDNA)
静脉 RV EMA ADA-SCID 单臂研究
(N=18)
59.4万欧元
(仅在意大利使用)
2017 Kymriah (Tisagenlecleucel) 静脉 LV FDA B-ALL 单臂研究
(N=75)
47.5万美元(美国)
Yescarta (Axicabtagene
ciloleucel)
静脉 RV FDA B-NHL 单臂研究
(N=111)
37.3万美元(美国)
Luxturna (Voretigene
neparvovec-rzyl)
视网膜下 AAV2 FDA RPE65-相关
视网膜营养不良
三期研究
(N=29)
85万美元,基于疗效
的退款计划(美国)
2019 Zynteglo (LentiGlobin) 静脉 LV EMA β-地中海贫血 单臂研究
(N=22)
177万美元,
5年分期
Zolgensma
(Onasemnogene)
静脉 AAV9 FDA SMA 单臂研究
(N=15+21)
212.5万美元,
5年分期(美国)
2020 Tecartus (Brexucabtagene
autoeucel)
静脉 RV FDA MCL 单臂研究
(N=60)
未知
Table 1 Summary of selected approved gene therapy products
产品 公司 适应证 载体-核酸 目前状态
LentiGlobin Bluebird Bio 地中海贫血/镰刀状贫血 LV-β-球蛋白 已批准
AAVrh74.MHCK7. Micro-Dystrophin Sarepta Therapeutics 杜氏肌营养不良 微小肌营养不良蛋白基因 临床II期
SGT-001 Solid Bioscience 杜氏肌营养不良 微小肌营养不良蛋白基因 临床II期
Zolgensma Novartis 脊髓性肌萎缩 AAV9-SMN 已批准
Valoctocogene roxaparvovec Biomarin Pharmaceutical 血友病A AAV5-FVIII BLA阶段
AMT-061 UniQure 血友病B AAV5-FIX-Padua 临床III期
SPK-8011 Spark Therapeutics 血友病A AAV-FVIII 临床II期
Ad-RTS-Hil-12 Ziopharm Oncology 恶性胶质瘤 Ad-IL-12 临床II期
HMI-102 Homology Medicines 苯丙酮尿症 AAVHSCs-PAH 临床前
NSR-REP1 Nightstar Therapeutics 无脉络膜症 AAV-REP1 临床III期
Table 2 The projection of key gene therapy products to year 2024
名称 优势 劣势 临床应用举例
腺病毒 可携带相对大的基因片段 相对复杂的病毒基因组,可在靶细胞中复制,具有免疫原性 如Gendicine
AAV 小病毒,免疫反应弱,基因转移效率高。不整合入宿主DNA中,适用于非分裂细胞 携带相对小的基因片段 应用场景广泛,是目前最常用的病毒载体,如血友病、SMA等[24]
疱疹病毒 可携带相对大的基因片段 相对复杂的病毒基因组,对细胞有潜在细胞毒作用 如Imlygic,治疗黑色素瘤
慢病毒 可稳定整合入基因组或非分裂细胞中,基因表达时间长,免疫原性弱 插入突变风险,体内递送效率低 如LentiGlobin,治疗地中海贫血;Kymriah治疗B-ALL
逆转录病毒 可稳定整合入基因组中,基因表达时间长,免疫原性弱 仅整合进分裂细胞中,存在插入突变风险,体内递送效率低 如Yescarta,治疗B-淋巴瘤
Table 3 Virus vectors used in gene therapy products
时间 主体 法规/条例 主要内容
2003年3月 NMPA 人基因治疗研究和制剂质量控制技术指导原则 从申报资料角度对其提出要求,拟按照药品进行管理。基本原则:(1) 必须确保安全有效,充分估计风险,提出相应质控要求;(2) 促进基因治疗研究,加强创新
2009年5月 卫生部 医疗技术临床应用管理办法 将基因治疗列为第三类医疗技术目录,后于2015年6月取消第三类医疗技术临床应用准入审批,医院成为第三类技术治疗和安全管理的责任主体
2017年12月 NMPA 细胞治疗产品研究与评价技术指导原则(试行) 规范和指导按照药品研发及注册的细胞治疗产品的研究与评价工作
2019年2月 卫健委 生物医学新技术临床应用管理条例(征求意见稿) 生物医学新技术临床研究必须经行政审批
2019年3月 卫健委 体细胞治疗临床研究和转化应用管理办法(试行) 以医疗机构为责任主体,为满足临床需求,规范和促进体细胞治疗临床研究和转化应用
Table 4 Pertinent regulations of gene therapy in China
[1]   High K A, Roncarolo M G. Gene therapy. The New England Journal of Medicine, 2019,381(5):455-464.
doi: 10.1056/NEJMra1706910 pmid: 31365802
[2]   Dunbar C E, High K A, Joung J K, et al. Gene therapy comes of age. Science, 2018, 359(6372):eaan4672.
pmid: 29326257
[3]   Wirth T, Parker N, Yla-Herttuala S. History of gene therapy. Gene, 2013,525(2):162-169.
doi: 10.1016/j.gene.2013.03.137 pmid: 23618815
[4]   Steffin D H M, Hsieh E M, Rouce R H. Gene therapy: Current applications and future possibilities. Advances in Pediatrics, 2019,66:37-54.
pmid: 31230699
[5]   Mukherjee S. The gene: An intimate history. New York: Scribner, 2016.
[6]   迟培娟, 王学昭, 陈芳, 等. 基因治疗及细胞治疗发展态势分析. 中国生物工程杂志, 2019,39(5):43-52.
[6]   Chi P J, Wang X Z, Chen F, et al. The analysis of development trend for gene and cell therapy. China Biotechnology, 2019,39(5):43-52.
[7]   Zhang W W, Li L, Li D, et al. The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 years in the clinic. Human Gene Therapy, 2018,29(2):160-179.
pmid: 29338444
[8]   Xin H. Chinese gene therapy. Gendicine’s efficacy: hard to translate. Science, 2006,314(5803):1233.
doi: 10.1126/science.314.5803.1233 pmid: 17124301
[9]   Melchiorri D, Pani L, Gasparini P, et al. Regulatory evaluation of Glybera in Europe - two committees, one mission. Nature Reviews Drug Discovery, 2013,12(9):719.
doi: 10.1038/nrd3835-c1 pmid: 23954897
[10]   Bryant L M, Christopher D M, Giles A R, et al. Lessons learned from the clinical development and market authorization of Glybera. Hum Gene Ther Clin Dev, 2013,24(2):55-64.
pmid: 23808604
[11]   Senior M. After Glybera’s withdrawal, what’s next for gene therapy? Nat Biotechnol, 2017,35(6):491-492.
doi: 10.1038/nbt0617-491 pmid: 28591128
[12]   Greig S L. Talimogene Laherparepvec: First global approval. Drugs, 2016,76(1):147-154.
pmid: 26620366
[13]   Cicalese M P, Ferrua F, Castagnaro L, et al. Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency. Blood, 2016,128(1):45-54.
pmid: 27129325
[14]   Maude S L, Laetsch T W, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. The New England Journal of Medicine, 2018,378(5):439-448.
pmid: 29385370
[15]   Neelapu S S, Locke F L, Bartlett N L, et al. Axicabtagene Ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. The New England Journal of Medicine, 2017,377(26):2531-2544.
doi: 10.1056/NEJMoa1707447 pmid: 29226797
[16]   Ameri H. Prospect of retinal gene therapy following commercialization of voretigene neparvovec-rzyl for retinal dystrophy mediated by RPE65 mutation. Journal of Current Ophthalmology, 2018,30(1):1-2.
pmid: 29564403
[17]   Russell S, Bennett J, Wellman J A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. Lancet, 2017,390(10097):849-860.
doi: 10.1016/S0140-6736(17)31868-8 pmid: 28712537
[18]   Thompson A A, Walters M C, Kwiatkowski J, et al. Gene therapy in patients with transfusion-dependent beta-thalassemia. The New England Journal of Medicine, 2018,378(16):1479-1493.
doi: 10.1056/NEJMoa1705342
[19]   Hoy S M. Onasemnogene Abeparvovec: First global approval. Drugs, 2019,79(11):1255-1262.
doi: 10.1007/s40265-019-01162-5 pmid: 31270752
[20]   Goswami R, Subramanian G, Silayeva L, et al. Gene Therapy leaves a vicious cycle. Frontiers in Oncology, 2019,9:297.
doi: 10.3389/fonc.2019.00297 pmid: 31069169
[21]   Peyvandi F, Garagiola I, Young G. The past and future of haemophilia: diagnosis, treatments, and its complications. Lancet, 2016,388(10040):187-197.
doi: 10.1016/S0140-6736(15)01123-X pmid: 26897598
[22]   Rangarajan S, Walsh L, Lester W, et al. AAV5-factor VIII gene transfer in severe hemophilia A. The New England Journal of Medicine, 2017,377(26):2519-2530.
doi: 10.1056/NEJMoa1708483 pmid: 29224506
[23]   Bender E. Gene therapy: Industrial strength. Nature, 2016,537(7619):S57-59.
doi: 10.1038/537S57a pmid: 27602741
[24]   Wang D, Tai P W L, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nature Reviews Drug Discovery, 2019,18(5):358-378.
doi: 10.1038/s41573-019-0012-9 pmid: 30710128
[25]   Brenner M K, Stephen G, Leen A M, et al. Is cancer gene therapy an empty suit? Lancet Oncology, 2013,14(11):e447-e456.
doi: 10.1016/S1470-2045(13)70173-6 pmid: 24079872
[26]   Xu L, Wang J, Liu Y, et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. New England Journal of Medicine, 2019,381(13):1240-1247.
[27]   Sun J, Zhao Y, Yang R, et al. The demographics, treatment characteristics and quality of life of adult people with haemophilia in China - results from the HERO study. Haemophilia, 2017,23(1):89-97.
doi: 10.1111/hae.13071 pmid: 27599642
[28]   Brennan T A, Wilson J M. The special case of gene therapy pricing. Nature Biotechnology, 2014,32(9):874-876.
doi: 10.1038/nbt.3003 pmid: 25203033
[29]   Seppo Y H. Glybera’s second act: the curtain rises on the high cost of therapy. Molecular Therapy, 2015,23(2):217-218.
doi: 10.1038/mt.2014.248 pmid: 25633169
[30]   Nicolas T, Mathias F. The payers’ perspective on gene therapies. Nature Biotechnology, 2015,33(9):902-904.
doi: 10.1038/nbt.3332 pmid: 26348952
[31]   Machin N, Ragni M V, Smith K J. Gene therapy in hemophilia A: a cost-effectiveness analysis. Blood Advances, 2018,2(14):1792-1798.
doi: 10.1182/bloodadvances.2018021345 pmid: 30042145
[32]   Mohamed A E E, Gerhard B, Petra R. The business case for cell and gene therapies. Nature Biotechnology, 2014,32(12):1192-1193.
doi: 10.1038/nbt.3084 pmid: 25489833
[33]   Schimmer J, Breazzano S. Investor outlook: Solving gene therapy pricing…with a cures voucher? Human Gene Therapy Clinical Development, 2016,27(4):132-136.
doi: 10.1089/humc.2016.29018.ind pmid: 27983892
[34]   Collins F S, Gottlieb S. The next phase of human gene-therapy oversight. The New England Journal of Medicine, 2018,379(15):1393-1395.
doi: 10.1056/NEJMp1810628 pmid: 30110242
[35]   Kenter M J H. Is it time to reform oversight of clinical gene therapy in the EU? British Journal of Clinical Pharmacology, 2019,85(1):8-10.
doi: 10.1111/bcp.13795 pmid: 30341921
[1] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[2] HUANG Lei,WAN Chang-qing,LIU Mei-qin,ZHAO Min,ZHENG Yan-peng,PENG Xiang-lei,YU Jie-mei,FU Yuan-hui,HE Jin-sheng. Construction of Recombinant Adenovirus Vectors Using the DNA Assembly Method[J]. China Biotechnology, 2021, 41(6): 23-26.
[3] CHEN Qing-yu,WANG Xian-zhong,ZHANG Jiao-jiao. Application of Gene Technology in the Treatment of Type 2 Diabetes Mellitus[J]. China Biotechnology, 2020, 40(11): 73-81.
[4] Ya-li HAN,Guang-heng YANG,Yan-wen CHEN,Xiu-li GONG,Jing-zhi ZHANG. The Optimization of Self-deleting Lentiviral Vector Carrying Human β-globin Gene and Promoter[J]. China Biotechnology, 2018, 38(7): 50-57.
[5] LIU Yi-xuan, BIAN Zhen, MA Hong-mei. Progress and Prospect of Cancer Gene Therapy[J]. China Biotechnology, 2016, 36(5): 106-111.
[6] TAO Chang-li, HUANG Shu-lin. Advances in Research on Optimization of Transgenic TCR Pairing in TCR Gene Therapy[J]. China Biotechnology, 2016, 36(3): 87-92.
[7] LIU Rui-qi, WANG Wei-wei, WU Yong-yan, ZHAO Qiu-yun, WANG Yong-sheng, QING Su-zhu. Research Progress of CRISPR-Cas9 and Its Application in Gene Therapy[J]. China Biotechnology, 2016, 36(10): 72-78.
[8] ZHU Shao-yi, GUAN Li-hong, LIN Jun-tang. CRISPR-Cas9 System and Its Applications in Disease Models[J]. China Biotechnology, 2016, 36(10): 79-85.
[9] XUE Jin-feng, XUE Zhi-gang, CHEN Yi-yao, LI Zhuo, YIN Biao, WU Ling-qian, LIANG De-sheng. In vitro and in vivo Gene Therapy Research of CDTK Genes Drove by Enhanced Tumor-specific Promoter in Liver Cancer[J]. China Biotechnology, 2015, 35(6): 1-7.
[10] XUE Yu-wen, LI Tie-jun, ZHOU Jia-ming, CHEN Li. The Application and Perspectives of Multi-target RNAi in the Research and Development of Gene Therapy[J]. China Biotechnology, 2015, 35(1): 75-81.
[11] LI Yu-qiang, ZHU Zhi-tu, WANG Wei, LI Chen, XU Na, WANG Yu, LI Nan, SUN Hong-zhi. Effect of Silencing Nup88 Gene by RNA Interference on Growth and Invasion in Human Breast Cancer MCF-7 Cell[J]. China Biotechnology, 2014, 34(9): 31-39.
[12] MA Bu-yun, HE Wan-wan, ZHOU Li, WANG Yi-gang. The Study on Anticancer Effect of Targeting Gene-Virus ZD55-XAF1 in Liver Cancer Xenograft of Mice and Its Safety[J]. China Biotechnology, 2014, 34(1): 15-20.
[13] FAN Fu, CHEN Jian-guo, REN Hong-wei. Development of Gene Therapy for Parkinson’s Disease And Alzheimer’s Disease[J]. China Biotechnology, 2013, 33(4): 129-135.
[14] LIU Si-ye, XIA Hai-bin. A New Targeted Gene Editing Technology Mediated by CRISPR-Cas System[J]. China Biotechnology, 2013, 33(10): 117-123.
[15] CHEN Feng, YANG Yi-shu, ZENG Yi. Current Development on RNA-based Anti-HIV-1 Gene Therapy[J]. China Biotechnology, 2012, 32(6): 93-97.