Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (9): 126-133    DOI: 10.13523/j.cb.20170917
    
Devolopment of Regulation of Protein Lysine Acetylation on Intermediate Metabolism
LAI Mu-lan, CHEN Xie-lan
College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
Download: HTML   PDF(909KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  A large number of lysine acetylation exist in the intermediate metabolic enzymes of life activities. The reversible lysine acetylation at specific sites of protein can regulte various kinds of intracellula metabolic pathways. Thus, the research of lysine acetylation of intermediate metabolic enzymes currently becomes a hotspot. The paper reviews the research progress of lysine acetylation of intermediate metabolic enzymes and summarizes several typical reversible lysine acetylation of intermediate metabolic enzymes, their distribution sites and the important regulatory role in the intermediate metabolic pathways, which provide a reference for futher study of protein acetylation.

Key wordsIntermediate metabolic enzymes      Acetyltransferase      Regulation      Deacetylase      Lysine actylation     
Received: 09 May 2017      Published: 25 September 2017
ZTFLH:  Q493.2  
Cite this article:

LAI Mu-lan, CHEN Xie-lan. Devolopment of Regulation of Protein Lysine Acetylation on Intermediate Metabolism. China Biotechnology, 2017, 37(9): 126-133.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170917     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I9/126

[1] Guan K L, Xiong Y. Regulation of intermediary metabolism by protein acetylation. Cell, 2011, 36(2):108-116.
[2] Hirschey M, Shimazu T, Huang J Y, et al. SIRT3 Regulates mitochondrial protein acetylation and intermediary metabolism. Cold Spring Harbor Symposia on Quantitative Biology, 2011, 76(23):267-277.
[3] Huang D, Li Z H, You D, et al. Lysine acetylproteome analysis suggests its roles in primary and secondary metabolism in Saccharopolyspora erythraea. Applied Microbiology and Biotechnology, 2015, 99(3):1399-1413.
[4] Zhang K, Zheng S, Yang J S, et al. Comprehensive profiling of protein lysine acetylation in Escherichia coli. Journal of Proteome Research, 2013, 12(2):844-851.
[5] Mo R, Yang M K, Chen Z, et al. Acetylome analysis reveals the involvement of lysine acetylation in photosynthesis and carbon metabolism in the model Cyanobacterium synechocystis sp. PCC 6803. Journal of Proteome Research, 2015, 14(2):1275-1286.
[6] Jones J, O'Connor C. Protein acetylation in prokaryotes. Proteomics, 2011, 11(15):3012-3022.
[7] Xing S F, Poirier Y. The protein acetylome and the regulation of metabolism. Trends in Plant Science, 2012, 17(7):423-430.
[8] Wagner G, Payne R. Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. Journal of Biological Chemistry, 2013, 288(40):29036-29045.
[9] Fan J, Shan C L, Kang H B, et al. Tyr Phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate the pyruvate dehydrogenase complex. Molecular Cell, 2014, 53(4):534-548.
[10] Barak R, Prasad K, Shainskaya A, et al. Acetylation of the chemotaxis response regulator CheY by acetyl-CoA synthetase purified from Escherichia coli. Journal of Molecular Biology, 2004, 342(2):383-401.
[11] Hu L, Lima B, Wolfe A. Bacterial protein acetylation:the dawning of a new age. Molecular Microbiology, 2010, 77(1):15-21.
[12] Tu S, Guo S J, Chen C J, et al. YcgC represents a new protein deacetylase family in prokaryotes. Biochemistry, 2015, 4(e05322):1-17.
[13] Hayden J, Brown L, Gunawardena H,et al. Reversible acetylation regulates acetate and propionate metabolism in Mycobacterium smegmatis. Microbiology, 2013, 159(9), 1986-1999.
[14] Bernal V, Castano-Cerezo S, Gallego-Jara J, et al. Regulation of bacteriral physiology by lysine acetylation of proteins. New Biotechnology, 2014, 31(6):586-595.
[15] Wang Q Y, Zhang Y K, Yang C, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science, 2010, 327(5968):1004-1007.
[16] Hentchel K, Escalante-Semerena J. Acylation of biomolecules in prokaryotes:a widespread strategy for the control of biological function and metabolic stress. Microbiology and Molecular Biology Reviews, 2015, 3(79):321-346.
[17] Bi J, Wang Y H, Yu H G, et al. Modulation of central carbon metabolism by acetylation of isocitrate lyase in Mycobacterium tuberculosis. Scientific Reports, 2016, 7(44826):1-11.
[18] Ishigaki Y, Akanuma G, Minoru Y, et al. Protein acetylation involved in streptomycin biosynthesis in Streptomyces griseus. Journal of Proteomics, 2017, 155:63-72.
[19] Zhao S, Xu W, Jiang W, et al. Regulation of cellular metabolism by protein lysine acetylation. Science, 2010, 327(5968):1000-1004.
[20] Jiang W, Wang S, Xiao M, et al. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Molecular Cell, 2011, 43(1):33-44.
[21] Lv L, Li D, Zhao D, et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Molecular Cell, 2011, 42(2):719-730.
[22] Zhang T F, Wang S W, Lin Y, et al. Acetylation negatively regulates glycogen phosphorylase by recruiting protein phosphatase 1. Cell Metabolism, 2012, 15(1):75-87.
[23] Hebert A, Dittenhafer-Reed K, Yu W, et al. Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Molecular Cell, 2013, 49(1):186-199.
[24] Bharathi S, Zhang Y X, Mohsen A, et al. Sirtuin 3(SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site. Journal of Biological Chemistry, 2013, 288(47):33837-33847.
[25] Chen T S, Liu J N, Li N, et al. Mouse SIRT3 Attenuates hypertrophy related lipid accumulation in the heart through the deacetylation of LCAD. Plosone, 2015, 11(5):1-18.
[26] Shimazu T, Hirschey M, Hua L, et al. SIRT3 Deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metabolism, 2010, 12(6):654-661.
[27] Hölper S, Nolte H, Bober E, et al. Dissection of metabolic pathways in the Db/Db mouse model by integrative proteome and acetylome analysis. Molecular BioSystems, 2015, 11(3):908-922.
[28] Matthew J R, John C N, Jason M H, et al. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(16):6601-6606.
[29] Takashi N, David J L, Marcia C H, et al. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell, 2009, 137(3):560-570.
[30] Yu W, LinY, Yao J. et al. Lysine 88 acetylation negatively regulates ornithine carbamoyltransferase activity in response to nutrient signals. Journal of Biological Chemistry, 2009, 284(20):13669-13675.
[31] Hallows W, Yu W, Smith B, et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Molecular Cell, 2011, 41(2):139-149.
[32] Trevisson E, Salviati L, Baldoin M, et al. Argininosuccinate lyase deficiency:mutational spectrum in Italian patients and identification of a novel ASL pseudogene. Human Mutation, 2007, 28(7):694-702.
[33] Mlinar B, Marc J, Janez A, et al. Molecular mechanisms of insulin resistance and associated diseases. International Journal of Clinical Chemistry, 2007, 375(1- 2):20-35.
[34] Yu W, Dittenhafer-Reed K, Denu J. SIRT3 protein deacetylates isocitrate dehydrogenase 2(IDH2) and regulates mitochondrial redox status. Journal of Biological Chemistry, 2012, 287(17):14078-14086.
[35] Hu H L, Zhu W W, Qin J, et al. Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis. Hepatology, 2017, 65(2)515-528.
[36] Zhu Y M, Yan Y F, Principe D, et al. SIRT3 and SIRT4 are mitochondrial tumor suppressor proteins that connect mitochondrial metabolism and carcinogenesis. Cancer & Metabolism, 2014, 65(2):15.
[37] Zhang M M, Pan Y D, Dorfman R, et al. Sirtinol promotes PEPCK1 degradation and inhibits gluconeogenesis by inhibiting deacetylase SIRT2. Scientific Reports, 2016,7(7):1-10.
[38] 王琪琳, 窦建民. 赖氨酸乙酰化在代谢相关疾病中的调控机制. 生命的化学, 2013, 33(6):678-683. Wang Q L, Dou J M. The regulatory mechanism of lysine acetylation in the metabolism-related diseases.Chemistry of Life, 2013, 33(6):678-683.
[39] 王义平, 雷群英. 乙酰化对代谢的调控及其在代谢相关疾病中的作用. 中国科学:生命科学, 2015, 45(11):1083-1092. Wang Y P, Lei Q Y.Regulation of metabolism by lysine acetylation and its role in metabolic diseases. Scientia Sinica Vitate,2015, 45(11):1083-1092.
[40] Heather L C, Cole M A, Tan J J, et al. Metabolic adaptation to chronic hypoxia in cardiac mitochondria. Basic Research in Cardiology, 2012, 107(3):268.
[41] Yoon H, Shin S H, Shin D H, et al. Differential roles of Sirt1 in HIF-1alpha and HIF-2alpha mediated hypoxic responses. Biochemical and Biophysical Research Communications, 2014, 444(1):36-43.
[42] Tao R, Coleman M C, Pennington J D, et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Molecular Cell, 2010, 40(6):893-904.
[43] Michael P, Laleh G, Danila B, et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Development, 2007, 21(20):2644-2658.
[44] Zhao T, Li J, Chen A F. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1.American Journal Physiology Endocrinology Metablism, 2010, 299(1):E110-E116.
[45] 吕斌娜, 梁文星. 蛋白质乙酰化修饰研究进展. 生物技术通报, 2015, 31(4):166-174. Lv B N, Liang W X. Advances in protein acetylation modification. Biotechnology Bulletin, 2015, 31(4):166-174.
[46] Jose M V, Francisco J A. Sirtuin activators and inhibitors. Biofactors, 2012, 38(5):349-359.
[1] YAN Yu-jia,ZOU Ling. Research Progress on the Biogenesis and Function of piRNAs[J]. China Biotechnology, 2021, 41(5): 45-50.
[2] BU Kai-xuan,ZHOU Cui-xia,LU Fu-ping,ZHU Chuan-he. Research on the Regulation Mechanism of Bacterial Transcription Initiation[J]. China Biotechnology, 2021, 41(11): 89-99.
[3] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[4] YU Guang-hai, PENG Hai-fen, WANG Ao-yu. Research Progress of Avilamycin Biosynthesis[J]. China Biotechnology, 2021, 41(1): 94-102.
[5] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.
[6] GAO Xiao-peng,HE Meng-chao,XU Ke,LI Chun. Research Progress on pH Regulation in the Process of Industrial Microbial Fermentation[J]. China Biotechnology, 2020, 40(6): 93-99.
[7] MAO Hui,LV Yu-hua,ZHU Li-hui,LIN Yue-xia,LIAO Rong-rong. The Role of Exosomes in the Diagnosis and Treatment of Viral Infection[J]. China Biotechnology, 2020, 40(3): 104-110.
[8] LI Yu,ZHANG Xiao. The Experience and Enlightenment of Cell Therapy Regulation Dual-track System in Japan[J]. China Biotechnology, 2020, 40(1-2): 174-179.
[9] Kai-xi JI,Dan JIAO,Zhong-kui XIE,Guo YANG,Zi-yuan DUAN. Advances and Prospects of Brown Adipocyte-Specific Gene PRDM16[J]. China Biotechnology, 2019, 39(4): 84-93.
[10] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[11] Qun-feng SHU,Mei-juan XU,Jing LI,Xian ZHANG,Tao-wei YANG,Zheng-hong XU,Zhi-ming RAO. Producing L-ornithine by Heterologous Expression of N-acetyl-L-ornithine Deacetylase in Corynebacterium crenatum[J]. China Biotechnology, 2018, 38(7): 29-39.
[12] Kai-ren TIAN,Er-shu XUE,Qian-qian SONG,Jian-jun QIAO,Yan-ni LI. The Research Progress of CRISPR-dCas9 in Transcriptional Regulation[J]. China Biotechnology, 2018, 38(7): 94-101.
[13] Tian-meng ZHOU,Xu-xia LIU. The Dilemma and Solution of the Precautionary Principle in EU Regulation of GMO——Based on the Analysis of Case Fidenato[J]. China Biotechnology, 2018, 38(6): 95-102.
[14] Jing-xia LI,Hui XIA,Xiu-lan LV,Jin WANG,Dong LIANG. The Metabolism and Regulation of Ascorbic Acid: A Case Study via Model and Horticultural Plant[J]. China Biotechnology, 2018, 38(3): 105-114.
[15] Bo-wen CHEN,Hai-long LIU,Yu-fei XIAO,Zi-hai QIN,Ye ZHANG,Xiao-ning ZHANG. Directional Regulation of Lignin Monomer Synthesis in Tobacco by Using COMT Gene and CCoAOMT Gene of Eucalyptus urophylla[J]. China Biotechnology, 2018, 38(3): 24-32.