Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (4): 84-93    DOI: 10.13523/j.cb.20190411
    
Advances and Prospects of Brown Adipocyte-Specific Gene PRDM16
Kai-xi JI1,2,Dan JIAO1,2,Zhong-kui XIE1,2,Guo YANG1,2**(),Zi-yuan DUAN3**()
1 Northwest Institute of Eco- Environment and Resources, CAS, Lanzhou 730000, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
Download: HTML   PDF(729KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

PRDM16(PR domain-containing 16) is a 16th member of PR domain family, was firstly found in a patient with leukemia and was initially thought to be related to myelodysplastic syndrome(MDS) and chronic myelogenous leukemia(CML). PRDM16 contains six important functional domains, including PR domain(PR), zinc finger domain 1(ZF-1), proximal regulatory region(PRR), repression domain(RD), zinc finger domain 2(ZF-2), and acidic activation domain(AD), respectively. The ablation of PR domain which is an exclusive domain for PRDM family has been linked to MDS and CML; the domains of ZF-1 and ZF-2 are capable to bind to peroxisome proliferator-activated receptor-α/γ(PPAR-α/γ), CCAAT-enhancer binding proteins-β(CEBP-β), peroxisome proliferator-activated receptor-γ coactivator1-α/β(PGC1-α/β) and mediator complex subunit 1(MED1); the RD domain is main site for PRDM16 to bind with C-terminal binding protein-1/2(CtBP-1/2). In mammals, the PRDM16 is involved in a spectrum of biological processes including cell fate determination and development. The PRDM16 is capable to regulate transcription via intrinsic chromatin-modifying, complexing with histone-modifying. Studies have shown the pivotal roles of PRDM16 in the determination and functions of brown and beige fat cell, as well as in thermogenesis, hematopoiesis and cardiac development. Studies indicated that PRDM16 is a key transcriptional regulator in differentiation of the brown adipocytes. PRDM16 has been found has an important role in maintaining “brown fat cell-specific” morphological properties and biological functions, as well as in association with high abundant mitochondria contents and its thermogenesis capacity. PRDM16 controls a “bidirectional cell fate switch” for skeletal myoblasts and brown fat cells. It involves in a “browning” process in white adipose tissues, which transform white adipocytes into brown/beige adipocytes. PRDM16 has also been related to the increase of visceral fat which may cause the immune response in animals. In the process of “browning”, many transcriptional factors were recruited to the promoter or enhancer regions of brown fat-related genes by regulation of PRDM16 through its ZF-1/2 domain. This, in turn, eventually promotes genes expression and BAT differentiation. And the recruit of C-terminal banding protein in the promoter of white fat cell-related genes makes them repressed by PRDM16 via its PLDLS motif in the repression domain. Recently, the genetic variations in the PRDM16 gene were identified, in humans and livestock and have been associated with a spectrum of diseases and production traits. Those reported SNPs in PRDM16 were summarized. The SNPs in human PRDM16 were significantly associated with risk of diseases such as dilated cardiomyopathy, dyslipidemia, migraine without aura and metabolic syndrome. In livestock, variations of PRDM16 have been mainly associated with growth traits and other important economic traits, including body weight, body size and carcass weight. Because of the potential applications of PRDM16 in treating human diseases and improving economic traits in livestock, the future research areas may focus on understanding the mechanism underlying the action of PRDM16 in adipose biology which may have relevance to other PRDM family members. This new knowledge may also have the potential to be exploited for therapeutic and breeding benefits.



Key wordsPRDM16      Protein structure      Biological function      Regulation mechanism      Polymorphism     
Received: 20 July 2018      Published: 08 May 2019
ZTFLH:  Q78  
Corresponding Authors: Guo YANG,Zi-yuan DUAN     E-mail: yangguo@lzb.ac.cn;zyduan@genetics.ac.cn
Cite this article:

Kai-xi JI,Dan JIAO,Zhong-kui XIE,Guo YANG,Zi-yuan DUAN. Advances and Prospects of Brown Adipocyte-Specific Gene PRDM16. China Biotechnology, 2019, 39(4): 84-93.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190411     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I4/84

Fig.1 The human PRDM16 structure
Fig.2 Two different isoforms of human PRDM16
Fig.3 Multistep model for activation of UCP1 by PRDM16 (a)PRDM16 and p300 are recruited to a TR-PGC-1α/β-enhancer complex in UCP1 gene, leading to histone acetylation and chromatin remodeling (b) The recruitment of MED1 by PRDM16 regulates the preinitiation complex formation and induces the expression of UCP1 expressing
SNPs 相关的疾病或性状
CM000663.2: g.3414616T>C
CM000663.2: g.3412301A>T
CM000663.2: g.3412644A>G
CM000663.2: g.3402986C>T
CM000663.2: g.3411770_3411771insC
CM000663.2:g.3402940delG
扩张型心肌病
左室心肌致密化不全[41]
CM000663.2: g.3178267C>G 代谢综合征[42]
CM000663.2: g.3167148T>A
CM000663.2: g.3167148T>C
无先兆偏头痛[43,44,45]、血脂异常(高密度脂蛋白胆固醇降低)[46]
CM000663.2: g.3426240G>A
CM000663.2: g.3426240G>T
高密度脂蛋白胆固醇升高[46]
CM000663.2: g.3041036T>C 体重降低
CM000663.2: g.3385157C>T 血脂异常(高三酰甘油血症,低高密度脂蛋白胆固醇血症)[47]
CM000677.2: g.61396368T>C 肥胖

XM_001788152: m.1641T>C(547aa)
XM_001788152: m.1881G>A(627aa)
南阳牛体重和日增重增加[48]
NC_007314.3: g.577G>T 南阳牛、郏县红牛和秦川牛体重、日增重、体斜长、胸围增加[49,50]
NC_007314.3: g.614T>C 郏县红牛体长、体高、腰角宽增加[49,50]
NC_007314.3: g.212237T>C 秦川牛的胸围、体重、腰角宽、十字部增加[49,50]
XM_417551: c.1161C>T(Ala/Ala, 387aa) 心重、肝重、四日小腿长增加[51]
XM_417551: c.1433G>A(Ser/Asn,478aa) 体重、体长增加[52]
Table 1 The SNPs reported in PRDM16 gene and their association with human diseases or animal traits
[1]   Mochizuki N, Shimizu S, Nagasawa T , et al. A novel gene, MEL1, mapped to 1p36.3 is highly homologous to the MDS1/EVI1 gene and is transcriptionally activated in t(1;3)(p36;q21)-positive leukemia cells. Blood, 2000,96(9):3209-3214.
doi: 10.1007/s002770000210 pmid: 11050005
[2]   Nishikata I, Sasaki H, Iga M , et al. A novel EVI1 gene family, MEL1, lacking a PR domain (MEL1S) is expressed mainly in t(1;3)(p36;q21)-positive AML and blocks G-CSF-induced myeloid differentiation. Blood, 2003,102(9):3323-3332.
doi: 10.1182/blood-2002-12-3944 pmid: 12816872
[3]   Seale P, Kajimura S, Yang W , et al. Transcriptional control of brown fat determination by PRDM16. Cell Metabolism, 2007,6(1):38-54.
doi: 10.1016/j.cmet.2007.06.001 pmid: 17618855
[4]   Harms M J, Ishibashi J, Wang W , et al. Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell Metabolism, 2014,19(4):593-604.
doi: 10.1016/j.cmet.2014.03.007 pmid: 4012340
[5]   Masetti R, Togni M, Astolfi A , et al. Whole transcriptome sequencing of a paediatric case of de novo acute myeloid leukaemia with del(5q) reveals RUNX1‐USP42 and PRDM16-SKI fusion transcripts. British Journal of Haematology, 2014,166(3):449-452.
doi: 10.1111/bjh.12855
[6]   Jo A, Mitani S, Shiba N , et al. High expression of EVI1 and MEL1 is a compelling poor prognostic marker of pediatric AML. Leukemia, 2015,29(5):1076-1083.
doi: 10.1038/leu.2015.5 pmid: 25567132
[7]   李琳, 赵春亭, 崔渤莉 , 等. HOXB4、PRDM16及HOXA9在急性髓系白血病中的表达及临床意义. 中国实验血液学杂志, 2016,24(2):326-331.
doi: 10.7534/j.issn.1009-2137.2016.02.004
[7]   Li L, Zhao C T, Cui B L , et al. Expression of HOXB4, PRDM16 and HOXA9 in patients with acute myeloid leukemia and its clinical significance. Journal of Experimental Hematology, 2016,24(2):326-331.
doi: 10.7534/j.issn.1009-2137.2016.02.004
[8]   Zhou B, Wang J, Lee S Y , et al. PRDM16 suppresses MLL1r leukemia via intrinsic histone methyltransferase activity. Molecular Cell, 2016,62(2):222-236.
doi: 10.1016/j.molcel.2016.03.010 pmid: 27151440
[9]   Zhu S, Xu Y, Song M , et al. PRDM16 is associated with evasion of apoptosis by prostatic cancer cells according to RNA interference screening. Molecular Medicine Reports, 2016,14(4):3357-3361.
doi: 10.3892/mmr.2016.5605 pmid: 27511603
[10]   Lei Q, Liu X, Fu H , et al. miR-101 reverses hypomethylation of the PRDM16 promoter to disrupt mitochondrial function in astrocytoma cells. Oncotarget, 2016,7(4):5007-5022.
doi: 10.18632/oncotarget.6652 pmid: 4826261
[11]   Zaveri H P, Beck T F, Shelly K E , et al. Identification of critical regions and candidate genes for cardiovascular malformations and cardiomyopathy associated with deletions of chromosome 1p36. PLoS One, 2014,9(1): e85600:1-10.
doi: 10.1371/journal.pone.0085600 pmid: 24454898
[12]   Choi J, Kim K J, Koh E J , et al. Gelidium elegans Regulates the AMPK-PRDM16-UCP-1 pathway and has a synergistic effect with Orlistat on obesity-associated features in mice Fed a high-fat diet. Nutrients, 2017,9(4):342-359.
doi: 10.3390/nu9040342 pmid: 5409681
[13]   Ishibashi J, Seale P . Functions of Prdm16 in thermogenic fat cells. Temperature, 2015,2(1):65-72.
doi: 10.4161/23328940.2014.974444
[14]   Seale P, Bjork B, Yang W , et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature, 2008,454(7207):961-967.
doi: 10.1038/nature07182
[15]   Kajimura S, Seale P, Kubota K , et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature, 2009,460(7259):1154-1158.
doi: 10.1038/nature08262 pmid: 2754867
[16]   Iida S, Chen W, Nakadai T , et al. PRDM16 enhances nuclear receptor-dependent transcription of the brown fat-specific Ucp1 gene through interactions with mediator subunit MED1. Genes & Development, 2015,29(3):308-321.
doi: 10.1101/gad.252809.114 pmid: 25644605
[17]   Uldry M, Yang W, St-Pierre J , et al. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metabolism, 2006,3(5):333-341.
doi: 10.1016/j.cmet.2006.04.002 pmid: 16679291
[18]   Harms M J, Lim H W, Ho Y , et al. PRDM16 binds MED1 and controls chromatin architecture to determine a brown fat transcriptional program. Genes & Development, 2015,29(3):298-307.
doi: 10.1101/gad.252734.114 pmid: 25644604
[19]   Ohno H, Shinoda K, Ohyama K , et al. EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature, 2013,504(7478):163-167.
doi: 10.1038/nature12652
[20]   Kajimura S, Seale P, Tomaru T , et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes & Development, 2008,22(10):1397-1409.
doi: 10.1101/gad.1666108 pmid: 18483224
[21]   Pinheiro I, Margueron R, Shukeir N , et al. Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell, 2012,150(5):948-960.
doi: 10.1016/j.cell.2012.06.048
[22]   Yang Q, Liang X, Sun X , et al. AMPK/α-ketoglutarate axis dynamically mediates DNA demethylation in the Prdm16 promoter and brown adipogenesis. Cell Metabolism, 2016,24(4):542-554.
doi: 10.1016/j.cmet.2016.08.010 pmid: 27641099
[23]   Schneider R, Bannister A J, Kouzarides T . Unsafe SETs: histone lysine methyltransferases and cancer. Trends in Biochemical Sciences, 2002,27(8):396-402.
doi: 10.1016/S0968-0004(02)02141-2 pmid: 12151224
[24]   Huang S . The retinoblastoma protein-interacting zinc finger gene RIZ in 1p36-linked cancers. Frontiers in Bioscience A Journal & Virtual Library, 1999,4(1-3):D528-532.
doi: 10.2741/Huang pmid: 10369808
[25]   Lahortiga I, Agirre X, Belloni E , et al. Molecular characterization of a t(1;3)(p36;q21) in a patient with MDS. MEL1 is widely expressed in normal tissues, including bone marrow, and it is not overexpressed in the t(1;3) cells. Oncogene, 2004,23(1):311-316.
doi: 10.1038/sj.onc.1206923 pmid: 14712237
[26]   Schaeper U, Boyd J M, Verma S , et al. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc Natl Acad Sci Usa, 1995,92(23):10467-10471.
doi: 10.1073/pnas.92.23.10467 pmid: 7479821
[27]   Gesta S, Tseng Y H, Kahn C R . Developmental origin of fat: tracking obesity to its source. Cell, 2007,131(2):242-256.
doi: 10.1016/j.cell.2007.10.004 pmid: 17956727
[28]   Seale P, Conroe H M, Estall J , et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. The Journal of Clinical Investigation, 2011,121(1):96-105.
doi: 10.1172/JCI44271 pmid: 3007155
[29]   Fruhbeck G, Sesma P, Burrell M A . PRDM16: the interconvertible adipo-myocyte switch. Trends Cell Biology, 2009,19(4):141-146.
doi: 10.1016/j.tcb.2009.01.007
[30]   Cousin B, Cinti S, Morroni M , et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. Journal of Cell Science, 1992,103(4):931-942.
[31]   Ohno H, Shinoda K, Spiegelman B M , et al. PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metabolism, 2012,15(3):395-404.
doi: 10.1016/j.cmet.2012.01.019
[32]   Huang L, Pan D, Chen Q , et al. Transcription factor Hlx controls a systematic switch from white to brown fat through Prdm16-mediated co-activation. Nature Communications, 2017,8(1):1-16.
doi: 10.1038/s41467-016-0009-6 pmid: 5431875
[33]   Chi J, Wu Z, Choi C , et al. Three-dimensional adipose tissue imaging reveals regional variation in beige fat biogenesis and PRDM16-dependent sympathetic neurite density. Cell Metabolism, 2018,27(1):226-240.
doi: 10.1016/j.cmet.2017.12.011 pmid: 29320703
[34]   Lodhi I J, Dean J M, He A , et al. PexRAP inhibits PRDM16-mediated thermogenic gene expression. Cell Reports, 2017,20(12):2766-2774.
doi: 10.1016/j.celrep.2017.08.077 pmid: 28930673
[35]   Cohen P, Levy J D, Zhang Y , et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell, 2014,156(1-2):304-316.
doi: 10.1016/j.cell.2013.12.021 pmid: 24439384
[36]   Ding H, Zheng S, Garcia-Ruiz D , et al. Fasting induces a subcutaneous-to-visceral fat switch mediated by microRNA-149-3p and suppression of PRDM16. Nature Communications, 2015,7(11533):1-17.
doi: 10.1038/ncomms11533 pmid: 27240637
[37]   Wu Z, Xie Y, Bucher N L , et al. Conditional ectopic expression of C/EBP beta in NIH-3T3 cells induces PPAR gamma and stimulates adipogenesis. Genes & Development, 1995,9(19):2350-2363.
doi: 10.1101/gad.9.19.2350 pmid: 7557387
[38]   Farmer S R . Transcriptional control of adipocyte formation. Cell Metabolism, 2006,4(4):263-274.
doi: 10.1016/j.cmet.2006.07.001 pmid: 17011499
[39]   Nardini M . CtBP/BARS: a dual-function protein involved in transcription co-repression, and Golgi membrane fission. Embo Journal, 2003,22(12):3122-3130.
doi: 10.1093/emboj/cdg283
[40]   Chinnadurai G . Transcriptional regulation by C-terminal binding proteins. International Journal of Biochemistry & Cell Biology, 2007,39(9):1593-1607.
doi: 10.1016/j.biocel.2007.01.025 pmid: 17336131
[41]   Arndt A K, Schafer S, Drenckhahn J D , et al. Fine mapping of the 1p36 deletion syndrome identifies mutation of PRDM16 as a cause of cardiomyopathy. American Journal of Human Genetics, 2013,93(1):67-77.
doi: 10.1016/j.ajhg.2013.05.015 pmid: 23768516
[42]   Park Y M, Province M A, Gao X , et al. Longitudinal trends in the association of metabolic syndrome with 550 k single-nucleotide polymorphisms in the Framingham Heart Study. Bmc Proc, 2009, 3(S7): S116:1-7.
doi: 10.1186/1753-6561-3-S7-S116 pmid: 2795888
[43]   Chasman D I, Schürks M, Anttila V , et al. Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nature Genetics, 2011,43(7):695-698.
doi: 10.1038/ng.856 pmid: 21666692
[44]   Xiaoping Fan M D, Jing W M, Wen F M , et al. Replication of migraine GWAS susceptibility loci in Chinese Han Population. Headache the Journal of Head & Face Pain, 2014,54(4):709-715.
doi: 10.1111/head.12329 pmid: 24666033
[45]   Wang P . The Research on the correlation between gene polymorphism such as PRDM16,TRPM8,TSPAN2,MMP16etc and migraine without aura. Sichuan Medical Journal, 2016,37(2):131-134
46   郭雅欣, 裴晓婷, 王黎 , 等. PRDM16基因4个SNPs位点与血脂异常的关系及其交互作用研究. 中华内分泌代谢杂志, 2017,33(8):651-655.
doi: 10.3760/cma.j.issn.1000-6699.2017.08.005
46   Guo Y X, Pei X T, Wang L , et al. Relationship between four SNPs of PRDM16 gene and dyslipidemia and their interaction. Chinese Journal of Endocrinology and Metabolism, 2017,33(8):651-655.
doi: 10.3760/cma.j.issn.1000-6699.2017.08.005
[47]   张菊红, 李南方, 张德莲 , 等. PRDM16基因单核苷酸多态性与肥胖人群血脂异常的相关性. 临床心血管病杂志, 2013,29(9):657-661.
[47]   Zhang J H, Li N F, Zhang D L , et al. Polymorphism of PRDM16 gene:effect on dyslipidemia in obese patients. Journal of Clinical Cardiology, 2013,29(9):657-661.
[48]   Wang J, Li Z J, Lan X Y , et al. Two novel SNPs in the coding region of the bovine PRDM16 gene and its associations with growth traits. Molecular Biology Reports, 2010,37(1):571-577.
doi: 10.1007/s11033-009-9816-8 pmid: 19760096
[49]   王璟 . 黄牛转录因子PRDM16基因的SNP检测及其与生长性状的关联分析. 咸阳: 西北农林科技大学, 2010.
[49]   Wang J . The analysis of trancription factor PRDM16 SNP of Bovine and three association with growth traits. Xianyang: Northwest A & F University, 2010.
[50]   Wang J, Wang C, Tian R , et al. Sequence variants in the bovine PRDM16 gene associated with body weight in Chinese cattle breeds. Genetics & Molecular Research Gmr, 2012,11(1):746-755.
doi: 10.4238/2012.March.22.5 pmid: 22576833
[51]   Wu J, Bostrom P, Sparks L M , et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 2012,150(2):366-376.
doi: 10.1016/j.cell.2012.05.016 pmid: 22796012
[52]   Han R L, Wei Y, Kang X , et al. Novel SNPs in the PRDM16 gene and their associations with performance traits in chickens. Molecular Biology Reports, 2012,39(3):3153-3160.
doi: 10.1007/s11033-011-1081-y
[53]   Wang J, Li Z J, Lan X Y , et al. Two novel SNPs in the coding region of the bovine PRDM16 gene and its associations with growth traits. Molecular Biology Reports, 2010,37(1):571-577.
doi: 10.1007/s11033-009-9816-8 pmid: 19760096
[54]   Hohenauer T, Moore A W . The Prdm family: expanding roles in stem cells and development. Development, 2012,139(13):2267-2282.
doi: 10.1242/dev.070110 pmid: 22669819
[55]   Hasegawa Y, Ikeda K, Chen Y , et al. Repression of adipose tissue fibrosis through a PRDM16-GTF2IRD1 complex improves systemic glucose homeostasis. Cell Metabolism, 2018,27(1):180-194.
doi: 10.1016/j.cmet.2017.12.005 pmid: 29320702
[1] WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148[J]. China Biotechnology, 2021, 41(7): 74-80.
[2] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[3] YU Guang-hai, PENG Hai-fen, WANG Ao-yu. Research Progress of Avilamycin Biosynthesis[J]. China Biotechnology, 2021, 41(1): 94-102.
[4] Jia-wei XU,Hua HE,Jing ZHANG,Chu-chao LEI,Hong CHENG,Yong-zhen HUANG. Research Progress on the Structure and Function of Transcription Factor KLF8 Gene[J]. China Biotechnology, 2018, 38(4): 90-95.
[5] LIANG Shi-bo, LIU Jia-ying, LIU Jie, YANG Jiang-tao, LI Ji-lin, ZHANG Yan-ming. Next-generation Sequencing Applications for Crop Genomes[J]. China Biotechnology, 2017, 37(2): 111-120.
[6] LIU Wen-bo, CHEN Yu-bao, XING Yu-hua. Advances in Research on Genetic Polymorphism of Cytochrome P450 and Drug Metabolism[J]. China Biotechnology, 2016, 36(12): 104-110.
[7] MA Li, WU Hao, WANG Bin-bin, QIAO Jian-jun, ZHU Hong-ji. Progress in Functions and Regulatory Mechanisms of the Transcription Factor Rex[J]. China Biotechnology, 2016, 36(10): 94-100.
[8] LI Ran, WANG Tian, ZHU Hong-liang. Biological Function and Research Methods of Long Noncoding RNA[J]. China Biotechnology, 2015, 35(9): 66-70.
[9] WU Qing, LIU Hui-yan, FANG Hai-tian, HE Jian-guo, HE Xiao-guang, YU Li-nan, WANG Meng-jiao. Metabolic Control Fermentation Mechanism and Breeding Strategies of Cytidine Excessive Biosynthesis in Bacillus amyloliquefaciens[J]. China Biotechnology, 2015, 35(9): 122-127.
[10] WANG Yong-cheng, CHEN Tao, SHI Ting, WANG Zhi-wen, ZHAO Xue-ming. Progress in Biosynthesis of Purine Nucleosides and Their Derivatives by Metabolic Engineering[J]. China Biotechnology, 2015, 35(5): 87-95.
[11] FENG Tian-xiang, WANG Ling, CHEN Hai-min, SHENG Qing, ZUO Rui, XIE Wen-jie. Research Advances on Function and Bioactive Substances of Endophytic actinomycetes[J]. China Biotechnology, 2015, 35(4): 98-106.
[12] YAO Xue, LIU Qi-qi, ZHAO Qing, CHEN Su-hong. Detection of Individualized Treatment and Test of Helicobacter pylori Infection through Visualized Gene Chip Technology[J]. China Biotechnology, 2013, 33(4): 92-100.
[13] YU Zhi-liang, ZHOU Ning, QIAO Hua. Advances in L-amino Acid Oxidase[J]. China Biotechnology, 2012, 32(03): 125-135.
[14] JIN Hui, LUAN Yu-shi. Progress on Transcription Factor in Gene Engineering of Diseases Resistances in Plants[J]. China Biotechnology, 2010, 30(10): 94-99.
[15] . Progress on transcription factor in Gene Engineering of Diseases Resistances in Plants[J]. China Biotechnology, 2010, 30(10): 0-0.