Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (3): 24-32    DOI: 10.13523/j.cb.20180304
Orginal Article     
Directional Regulation of Lignin Monomer Synthesis in Tobacco by Using COMT Gene and CCoAOMT Gene of Eucalyptus urophylla
Bo-wen CHEN(),Hai-long LIU,Yu-fei XIAO,Zi-hai QIN,Ye ZHANG,Xiao-ning ZHANG
Guangxi Forestry Research Institute, Key Laboratory of Central South Fast-growing Timber Cultivation of Forestry Ministry of China, Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Nanning 530002, China
Download: HTML   PDF(1258KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Directional regulation effect of Eucalyptus urophylla COMT gene and CCoAOMT gene on lignin monomer synthesis were studied by tobacco transformation system. Transgenic plants C-S(contain sense EuCOMT fragment), CR(contain full-length RNAi fragment of EuCCoAOMT), C-CR(contain EuCOM and EuCCoAOMT dual-gene) were obtained, and the expression of sense EuCOMT fragment was detected in transgenic tobacco, while the RNAi fragment of EuCCoAOMT caused strong inhibition on tobacco CCoAOMT gene. The growth morphology, lignin content, fiber content and anatomical structure of transgenic tobacco were not significantly different from those of wild type. The results of lignin monomer detection showed the G lignin content increased 17.72% and S/G ratio decreased 17.99% in transgenic plant C-S, meanwhile the S/G ratio increased 61.62% in CR. In C-CR, G lignin content decreased 57.38%, and S/G ratio increased 114.94%. The result showed that the inhibition of CCoAOMT had a significant inhibitory effect on lignin synthesis in G, and the dual-gene transformation of EuCOMT and EuCCoAOMT showing the best directional regulation effect.



Key wordsDual-gene transformation      Lignin monomer synthesis      Directional regulation      Tobacco transformation     
Received: 28 November 2017      Published: 04 April 2018
ZTFLH:  Q78  
Cite this article:

Bo-wen CHEN,Hai-long LIU,Yu-fei XIAO,Zi-hai QIN,Ye ZHANG,Xiao-ning ZHANG. Directional Regulation of Lignin Monomer Synthesis in Tobacco by Using COMT Gene and CCoAOMT Gene of Eucalyptus urophylla. China Biotechnology, 2018, 38(3): 24-32.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180304     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I3/24

Fig.1 Schematic of expression vectors
引物名称序列(5'to 3')
COMT-F1GGGACTAGTGGAGAGGAGAGAATGGGTTC
COMT-R1GGGGTCGACGAGCAGATCAAGCAGTCTTC
CCoAOMT-F1GGGGGTACCAGTTTGAATCAATGGCCACC
CCoAOMT-R1GGGTCTAGATAGATGCTCAGCTGATCCGA
P-actin-FCTGGAATCCATGAGACTACTTACAA
P-actin-RAACCGCCACTGAGCACAATA
P-CCoAOMT-FTTGAGGACGGCAAATACCAT
P-CCoAOMT-RAGCCAAAGCCTTGTTGAGTTC
P-EuCOMT-FAGAAGATACTGGAAACATACAAGGG
P-EuCOMT-RTTTGGAACGCTGACGAACAT
Table 1 Primers used in this study
Fig.2 PCR validation of transgenic tobacco seedling
(a) M:D2000 marker(TIANGEN);1-6:PCR identification results of transgenic plants contain pEuCOMT-S vector with COMT-F1/COMT-R1 primers, 3 and 6 were positive plants (b) M:D2000 marker(TIANGEN);1-6:PCR identification results of transgenic plants contain pEuCCoAOMT-RNAi vector with CCoAOMT-F1/ CCoAOMT-R1 primers, 2 and 3 were positive plants (c) M:D2000 marker(TIANGEN);1,3,5,7,9,11:PCR identification results of transgenic plants contain pEuCCoAOMT-EuCOMT vector with CCoAOMT-F1/CCoAOMT-R1 primers;2,4,6,8,10,12:PCR identification results of transgenic plants contain pEuCCoAOMT-EuCOMT vector with COMT-F1/COMT-R1 primers,3/4、7/8 and 9/10 corresponding plant were positive plants
Fig.3 Tobacco genetic transformation
(a) Callus differentiation (b) Bud strengthen cultivation (c)Rooting cultivation of transgenic plants (d) Transplanting of transgenic plants (e) Transgenic plants cultivated for 120 days (f) Transgenic plants cultivated for 270 days (g) Transgenic plants cultivated for 330 days blooming as normal
Fig.4 Effect of transforming on gene expression
Different letters represent a highly significant difference at 0.05 level
植株编号木质素含量(%)纤维素含量(%)
WT13.26±0.07 a34.03±0.07 b
C-S12.94±0.17 ab35.61±0.05 a
CR12.71±0.23 b33.34±0.08 c
C-CR12.33±0.31 c33.74±0.11 d
Table 2 Lignin and cellulose content in transgenic tobacco
植株编号直径(μm)细胞面积(μm2)细胞壁厚度(μm)
第5节第7节
WT6423.10±342.95a8218.97±334.28a135.46±42.30 a2.29±0.44 a
C-S6514.79±411.19a8114.65±315.10a140.53±53.92 a2.33±0.61 a
CR6220.02±471.10a7928.96±374.35a140.98±41.12 a2.41±0.54 a
C-CR6606.09±265.25a8444.17±267.36a131.16±47.40 a2.49±0.62 a
Table 3 Measurement of stem section of transformed plants
Fig.5 M?ule stain of xylem
植株编号G木质素单体含量S木质素单体含量S/G
WT9.23±0.60 b8.03±0.49 a0.87±0.01 c
C-S10.87±0.10 a7.75±0.45 a0.71±0.04 c
CR5.28±0.31 c7.43±0.56 a1.41±0.05 b
C-CR3.93±0.28 d7.36±0.45 a1.87±0.24 a
Table 4 Analysis of lignin monomer content in stem of transgenic plants
[1]   何柏华, 付强, 曾嵘. 广西南部桉树工业原料林立地质量评价. 广西林业科学, 2017, 46(3):325-328.
[1]   He B H, Fu Q, Zeng R. Site quality evaluation of eucalyptus industrial raw material forest in Southern Guangxi. Guangxi Forestry Science, 2017, 46(3):325-328.
[2]   黎怀玲, 付朝阳, 廖仁雅,等. 6年生杂交桉无性系对比试验. 广西林业科学, 2016, 45(2):195-198.
[2]   Li H L,Fu C Y, Liao R Y, et al.A Comparison Trial of 6-Year-Old Hybrid Eucalyptus Clones. Guangxi Forestry Science, 2016, 45(2):195-198.
[3]   赵艳玲. 正义、反义和RNA干扰技术调控杨树木质素生物合成途径. 北京: 北京林业大学,2006.
[3]   Zhao Y L.Modulation of Lignin Biosynthesis of Poplar by Sense, Antisense and RNA Interference Technology. Beijing: Beijing Forestry University,2006.
[4]   Trabucco G M, Matos D A, Lee S J, et al.Functional characterization of cinnamyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon. Bmc Biotechnology, 2013, 13(1): 1-18.
doi: 10.1186/1472-6750-13-1
[5]   Tu Y, Rochfort S, Liu Z, et al.Functional analyses of caffeic acid O-methyltransferase and cinnamoyl-coa-reductase genes from perennial ryegrass (Lolium perenne). Plant Cell, 2010, 22(10): 3357-3373.
doi: 10.1105/tpc.109.072827 pmid: 20952635
[6]   Guo D, Chen F, Inoue K, et al.Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl Coa 3-O-methyltransferase in transgenic Alfalfa. Impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell, 2001, 13(1): 73-88.
doi: 10.1105/tpc.13.1.73
[7]   Piquemal J, Chamayou S, Nadaud I, et al.Down-regulation of caffeic acid O-methyltransferase in maize revisited using a transgenic approach. Plant Physiology, 2003, 130(4): 1675-1685.
[8]   Zhong R, Himmelsbach D S, Ye Z H.Essential role of caffeoyl coenzyme a O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiology, 2000, 124(2): 563-577.
doi: 10.1104/pp.124.2.563
[9]   魏建华, 王彦珍, 王宏芝, 等. 抑制CCoAOMT表达的转基因杨树的制浆性能. 科学通报, 2008,53(21): 2612-2616.
[9]   Wei J H, Wang Y Z, Wang H Z, et al.Pulping properties of transgenic poplar with inhibition of CCoAOMT expression. Chinese Science Bulletin, 2008,53(21): 2612-2616.
[10]   Lee Y, Chen F, Gallegogiraldo L, et al.Integrative analysis of transgenic alfalfa (Medicago sativa L.) suggests new metabolic control mechanisms for monolignol biosynthesis. Plos Computational Biology, 2011, 7(5): e1002047.
doi: 10.1371/journal.pcbi.1002047 pmid: 21625579
[11]   Zhou R.Distinct cinnamoyl coa reductases involved in parallel routes to lignin in Medicago truncatula. Proceedings of the National Academy of Sciences, 2010, 107(41): 17803-17808.
[12]   赵华燕, 张景昱, 刘惠荣, 等. 抑制COMTCCoAOMT调控植物木质素的生物合成. 科学通报, 2002, 47(8): 604-607.
doi: 10.3321/j.issn:0023-074X.2002.08.011
[12]   Zhao H Y, Zhang J Y, Liu H R, et al.Regulation of lignin synthesis by inhibition of COMT and CCoAOMT. Chinese Science Bulletin, 2002, 47(8): 604-607.
doi: 10.3321/j.issn:0023-074X.2002.08.011
[13]   陈洪章. 纤维素生物技术.北京: 化学工业出版社, 2005.
[13]   Chen H Z. Cellulosic Biotechnology.Beijing: Chemical Industry Press, 2005.
[14]   王林风, 程远超. 硝酸乙醇法测定纤维素含量. 化学研究, 2011, 22(4):52-55.
[14]   Wang L F, Cheng C Y.Determination the content of cellulose by nitric acid-ethanol method. Chemical Research, 2011, 22(4):52-55.
[15]   李正理. 植物制片技术. 北京: 科学出版社, 1987.
[15]   Li Z L. Plant Sectioning Technique.Beijing: Science Press, 1987.
[16]   Tian X, Xie J, Zhao Y, et al.Sense-, antisense- and RNAi-4CL1 regulate soluble phenolic acids, cell wall components and growth in transgenic Populus tomentosa Carr. Plant Physiology & Biochemistry, 2013, 65(6):111.
doi: 10.1016/j.plaphy.2013.01.010 pmid: 23434928
[17]   邓建华, 管梦灵, 刘美芹. 高粱茎秆中木质素分布的显微技术研究. 植物学研究, 2014, 3: 188-194.
doi: 10.12677/br.2014.35024
[17]   Deng J H, Guan M L, Liu M Q.Study on microscopy techniques for identifying lignin distribution in the stem of Sorghum. Botanical Research, 2014, 3:188-194.
doi: 10.12677/br.2014.35024
[18]   Barros-Rios J, Malvar R A, Jung H J G, et al. Cell wall composition as a maize defense Mechanism against corn borers. Phytochemistry, 2011, 72(4-5): 365-371.
doi: 10.1016/j.phytochem.2011.01.004 pmid: 21281952
[19]   Lothar K, Frankw T.Biomechanics and transgenic wood. American Journal of Botany, 2006, 93(10): 1433-1438.
doi: 10.3732/ajb.93.10.1433
[20]   Buanafina M M, Fescemyer H W.Modification of esterified cell wall phenolics increases vulnerability of tall fescue to herbivory by the fall armyworm. Planta, 2012, 236(2): 513-523.
doi: 10.1007/s00425-012-1625-y pmid: 22434315
[21]   Meyermans H.Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme a O-methyltransferase, an enzyme involved in lignin biosynthesis. Journal of Biological Chemistry, 2000, 275(47): 36899.
doi: 10.1074/jbc.M006915200
[22]   Chapple C.Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annual Review of Plant Biology, 1998, 49(1): 311.
doi: 10.1146/annurev.arplant.49.1.311
[23]   Jackson L A, Shadle G L, Zhou R, et al.Improving saccharification efficiency of Alfalfa stems through modification of the terminal stages of monolignol biosynthesis. BioEnergy Research, 2008, 1(3): 180.
doi: 10.1007/s12155-008-9020-z
No related articles found!