Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (7): 63-68    DOI: 10.13523/j.cb.20140710
    
Genomic Imprinting and Long Noncoding RNA
QIU Jia-Jun, YAN Jing-Bin
Shanghai Chlidren's Hospital, Shanghai Institute of Medical Genetics, Shanghai JiaoTong University, Key Laboratory of Embryo Molecular Biology, Ministry of Health, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, China
Download: HTML   PDF(431KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Genomic imprinting is a kind of epigenetic mechanism, which affects monoallelic parent-of-origin-specific expression in mammal's development. Noncoding RNA (ncRNA) is a polynucleotides that does not code protein, it can regulate gene transcription. At least one non-coding RNA transcript is existed in most of the imprinted loci and genomic imprinting is mainly regulated by lang-non-coding RNA which the length is longer than 200nt, through cis-transcriptional interference. Aberrant expression of imprinting gene and related lncRNA are the cause of some congenital diseases. So far, dozens of genetic imprinting is found to be related with human genetic diseases, in which genomic imprinting regulated by lncRNA plays an important role in the occurrence and treatment. The regulation disscussed mechanism of the genomic imprinting by lncRNA and its related diseases.



Key wordsGenomic imprinting      Long nocoding RNA      Diseases     
Received: 23 April 2014      Published: 25 July 2014
ZTFLH:  Q52  
Cite this article:

QIU Jia-Jun, YAN Jing-Bin. Genomic Imprinting and Long Noncoding RNA. China Biotechnology, 2014, 34(7): 63-68.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140710     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I7/63


[1] Surani M A, Barton S C, Norris M L. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature, 1984, 308(5959):548-550.

[2] McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell, 1984, 37(1):179-183.

[3] Barlow D P. Genomic imprinting: a mammalian epigenetic discovery model. Annu Rev Genet, 2011, 45:379-403.

[4] Fedoriw A, Mugford J, Magnuson T. Genomic imprinting and epigenetic control of development. Cold Spring Harb Perspect Biol, 2012, 4(7):a008136.

[5] Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res, 2012, 22(9):1775-1789.

[6] Wilusz J E, Sunwoo H, Spector D L. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev, 2009, 23(13):1494-1504.

[7] Pauli A, Rinn J L, Schier A F. Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet, 2011, 12(2):136-149.

[8] Collins F S,Lander E S,Rogers J, et al. Finishing the euchromatic sequence of the human genome. Nature, 2004, 431(7011):931-945.

[9] Kung J T, Colognori D, Lee J T, et al. Long Noncoding RNAs: Past, Present, and Future. Genetics, 2013, 193(3):651-669.

[10] Fire A, Xu S, Montgomery M K, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669):806-811.

[11] Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5):843-854.

[12] Okazaki Y, Furuno M, Kasukawa T, et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature, 2002, 420(6915):563-573.

[13] Lee J T, Bartolomei M S. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell, 2013, 152(6):1308-1323.

[14] Kornienko A E, Guenzl P M, Barlow D P, et al. Gene regulation by the act of long non-coding RNA transcription. BMC Biol, 2013, 11:59.

[15] Bumgarner S L, Dowell R D, Grisafi P, et al. Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proc Natl Acad Sci U S A. 2009, 106(43):18321-18326.

[16] Lee J S, Shilatifard A. A site to remember: H3K36 methylation a mark for histone deacetylation. Mutat Res, 2007, 618(1-2):130-134.

[17] Bannister A J, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res, 2011, 21(3):381-395.

[18] Brookes E, Pombo A. Modifications of RNA polymerase II are pivotal in regulating gene expression states. EMBO Rep, 2009, 10(11):1213-1219.

[19] Ehrensberger A H, Svejstrup J Q. Reprogramming chromatin. Crit Rev Biochem Mol Biol, 2012, 47(5): 464-482.

[20] van Werven F J, Neuert G, Hendrick N, et al. Transcription of two long noncoding RNAs mediates mating-type control of gameto genesis in budding yeast. Cell, 2012, 150(6):1170-1181.

[21] Houseley J, Rubbi L, Grunstein M, et al. ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Mol Cell, 2008, 32(5):685-695.

[22] Li B, Carey M, Workman J L. The role of chromatin during transcription. Cell, 2007, 128(4):707-719.

[23] Deaton A M, Bird A. CpG islands and the regulation of transcription. Genes Dev, 2011, 25(10):1010-1022.

[24] Tufarelli C, Stanley J A, Garrick D, et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet, 2003, 34(2):157-165.

[25] Hobson D J, Wei W, Steinmetz L M, et al. RNA polymerase II collision interrupts convergent transcription. Mol Cell, 2012, 48(3):365-374.

[26] 程婷婷, 徐刚毅. 基因印记的功能及应用. 生命的化学, 2007, 27(5):402-404. Chen T T, Xu G Y. Functions and applications of genomic imprinting. Chemistry of Life, 2007, 27(5):402-404.

[27] Dykens E M, Lee E, Roof E. Prader-Willi syndrome and autism spectrum disorders: an evolving story. J Neurodev Disord, 2011, 3(3):225-237

[28] Cassidy S B, Schwartz S, Miller J L, et al. Prader-Willi syndrome. Genet Med, 2012, 14(1):10-26.

[29] 谢小虎, 周文华. 基因组印记与疾病研究进展. 生命科学, 2008, 20(3):438-441. Xie X H, Zhou W H. Genomic imprinting and disease. Chinese Bulletin of Life Sciences, 2008, 20(3):438-441.

[30] Kishore S, Stamm S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science, 2006, 311(5758):230-232.

[31] Zhang Z, Falaleeva M, Agranat-Tamir L, et al. The 5' untranslated region of the serotonin receptor 2C pre-mRNA generates miRNAs and is expressed in non-neuronal cells. Exp Brain Res, 2013, 230(4):387-394.

[32] Falaleeva M, Sulsona C R, Zielke H R, et al. Molecular characterization of a patient presumed to have prader-willi syndrome. Clin Med Insights Case Rep, 2013, 6:79-86.

[33] Weksberg R, Shen D R, Fei Y L, et al. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiede-mann syndrome. Nat Genet, 1993, 5(2):143-150.

[34] Ogawa O, Eccles M R, Szeto J, et al. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms’tumour. Nature, 1993, 362(6422):749-751.

[35] Rainier S, Johnson L A, Dobry C J, et al. Relaxation of imprinted genes in human cancer. Nature, 1993, 362:747-749.

[36] Weksberg R, Shuman C, Smith A C. Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet, 2005, 137C(1):12-23.

[37] Hark A T, Tilghman S M. Chromatin conformation of the H19 epigenetic mark. Hum Mol Genet, 1998, 7(12):1979-1985.

[38] Bliek J, Maas S M, Ruijter J M, et al. Increased tumour risks for BWS patients correlates with aberrant H19 and not KCNQ1OT1 hypomethylation in familial cases of BWS. Hum Mol Gen, 2001, 10(5):467-476.

[39] Li M, Squire J, Shuman C, et al. Imprinting status of 11p15 genes in Beck-with-Wiedemann syndrome patients with CDKN1C mutations. Genomics, 2001, 74(3):370-376.

[40] Sun F L, Dean W L, Kelsey G, et al. Transactivation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome. Nature, 1997, 389(6653):809-815.

[41] Sparago A, Cerrato F, Vernucci M, et al. Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiede-mann syndrome. Nat Genet, 2004, 36(9):958-960.

[42] Lee M P, Hu R J, Johnson L A, et al. Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rear-rangements. Nat Genet, 1997, 15(2):181-185.

[43] Pandey R R, Mondal T, Mohammad F, et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell, 2008; 32(2):232-246.

[44] Terranova R, Yokobayashi S, Stadler M B, et al. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell, 2008, 15(5):668-679.

[45] Umlauf D, Goto Y, Cao R, et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet, 2004, 36(12):1296-1300.

[46] Lewis A, Mitsuya K, Umlauf D, et al. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat Genet, 2004, 36(12):1291-1295.

[47] Kanduri C. Kcnq1ot1 A chromatin regulatory RNA. Semin Cell Dev Biol, 2011, 22(4):343-350.

[48] Weksberg R, Shuman C, Smith A C. Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet, 2005, 137C(1):12-23.

[49] Jiang J, Jing Y, Cost G J, et al. Translating dosage compensation to trisomy 21. Nature, 2013, 500(7462):296-300.

[1] TAN Pei-lin,ZHANG Ying,ZHANG Jun,GAO Xiao,WANG Shu-kun,HOU Lin,YUAN Zeng-qiang. Role and Mechanism of Metformin in Oligodendrocyte Precursor Cell Differentiation[J]. China Biotechnology, 2021, 41(9): 1-9.
[2] ZHU Jia-hao,CHEN Ting,XI Qian-yun. Research Progress on miR-146a Involved in Different Diseases[J]. China Biotechnology, 2021, 41(9): 64-70.
[3] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[4] YUAN Bo,WANG Jie-wen,KANG Guang-bo,HUANG He. Research Progress and Application of Bispecific Nanobody[J]. China Biotechnology, 2021, 41(2/3): 78-88.
[5] ZHANG Ying,KONG Xiang-xi,HOU Lin,WANG Shu-kun,YUAN Zeng-qiang. Role and Mechanism of Ozanimod (RPC1063) in Oligodendrocyte Precursor Cell Differentiation[J]. China Biotechnology, 2020, 40(6): 10-19.
[6] MEI Ya-xian,WANG Yue,LUO Wen-xin. Application of Nano-antibody in the Prevention, Diagnosis and Treatment of Infectious Diseases[J]. China Biotechnology, 2020, 40(10): 24-34.
[7] DAO Feng-ting,YANG Lu,WANG Ya-zhe,CHANG Yan,YUAN Xiao-ying,LI Ling-di,CHEN Wen-min,LONG Ling-yu,LIU Yan-rong,QIN Ya-zhen. Characteristics and Prognostic Significance of Ki-67 Expression at diagnosis in Adult t(8;21) Acute Myeloid Leukemia[J]. China Biotechnology, 2019, 39(9): 11-18.
[8] Ran XU,Song CHEN. Research Progress of CRISPR/Cas9 Delivery System and Its Application in Gene-related Diseases[J]. China Biotechnology, 2018, 38(3): 81-88.
[9] Jia-ao GE,Chang LIU,Jian-gang GONG,Yan-qin LIU. Research Progress of Antibacterial Cyclopeptides[J]. China Biotechnology, 2018, 38(11): 76-83.
[10] LI Li-li, WEI Qi-yan, WANG Yan-fang, HE Zhong-mei, GAO Yu-gang, MA Ji-sheng. Research Progress of FGF/FGFR Signaling Regulating Osteoblast Differentiation[J]. China Biotechnology, 2017, 37(6): 107-113.
[11] YANG Yu, LIU Ya, GU Lan, ZHAO Ting-ting, REN Lu-feng. The Current Situation and the Development Trend of Automatic Nucleic Acid Molecular Diagnostic System[J]. China Biotechnology, 2017, 37(3): 115-123.
[12] REN Hua-jing, LIU Xiao-zhi, WANG Zhi-ming, GAO Jian. Progression of Central Nervous System Disease Therapeutic Antibody Drug Application[J]. China Biotechnology, 2016, 36(9): 54-58.
[13] HU Li-li, ZHUO Kan, LIN Bo-rong, LIAO Jin-ling. The Research Progress of Methods on Function Analysis of Effectors from Plant-parasitic Nematode[J]. China Biotechnology, 2016, 36(2): 101-108.
[14] CHEN Na-zi, JIANG Chao, LI Xiao-kun. Role of Endoplasmic Reticulum Stress in Diseases[J]. China Biotechnology, 2016, 36(1): 76-85.
[15] ZHAO Yang, TIAN Hai-shan, LI Xiao-kun, JIANG Chao . The Research Progress of Fibroblast Growth Factor 20[J]. China Biotechnology, 2015, 35(8): 103-108.