Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (7): 69-75    DOI: 10.13523/j.cb.20140711
    
The Application of Fusion Enzyme on Chracter Modification and the Constructing of Multiple-functional enzyme
YAN Kai-zhou, LU Bin, LIANG Yu-ting, ZHANG Yun-kai, CHENG Gui-guang, LIANG Zhi-qun
College of Life Science and Technology, Guangxi University, Nanning 530004, China
Download: HTML   PDF(455KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Fusion enzyme is one of the strategies to modify the characteristic of enzymes. Multiple-functional enzymes may be constructed by enzyme fusion. To our knowledge, fusion enzymes were applied in the production of oligosaccharide, biofuel, biomaterial, amino acid and biosensor. Fusion enzyme can be formed by rational design and non-rational design. Each stratagy has the advantage that the other don't. According to the application of these two strategies be used in rescent years, we illustrated the application of fusion enzyme in industry.



Key wordsFusion enzyme      Chracter modification      Mutiple-functional enzyme     
Received: 07 May 2014      Published: 25 July 2014
ZTFLH:  Q814  
Cite this article:

YAN Kai-zhou, LU Bin, LIANG Yu-ting, ZHANG Yun-kai, CHENG Gui-guang, LIANG Zhi-qun. The Application of Fusion Enzyme on Chracter Modification and the Constructing of Multiple-functional enzyme. China Biotechnology, 2014, 34(7): 69-75.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140711     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I7/69


[1] 贝蒂娜R.里贝尔 安德列亚斯s.博马留斯. 生物催化. 北京: 化学工业出版社,2006. 4. Andreas S B, Bettina R R. Biocatalysis Fundamentals and Applications. Beijing: Chemical Industry Press, 2006, 4.

[2] 陈守文. 酶工程. 北京: 科学出版社,2008. 155-156. Cheng S W. Enzyme Engineering. Beijing: Science Press, 2008. 155-156.

[3] 罗贵民. 酶工程. 第2版.北京: 化学工业出版社,2008. 277. Luo G M. Enzyme Engineering. 2nd ed. Beijing: Chemical Industry Press, 2008. 277.

[4] Aiyar A, Xiang Y, Leis J. Site-directed mutagenesis using overlap extension PCR//in vitro mutagenesis protocols. Humana Press, 1996,57: 177-191.

[5] 魏薇, 李凡 陈海如. 利用重叠延伸 PCR 技术扩增长片段 DNA. 云南大学学报: 自然科学版, 2009. Wei W, Li F, Chen H R. Amplification of Long DNA Fragment by Splicing Extension Overlap PCR. Journal of Yunnan University, 2009.

[6] Shevchuk N A, Bryksin A V, Nusinovich Y A, et al. Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic acids research, 2004, 32: e19-e19.

[7] 李玉,路福平,王正祥. 功能性低聚糖合成中糖基转移酶研究进展. 食品科学, 2013, 34(9): 358-363. Li Y,Lu F P,Wang Z X. Recent Advance in Research and Application of Several Glycosytransferases in the Synthesis of Functional Oligosaccharides. Food Science,2013,34(9):358-363.

[8] 卢庭婷. 低聚异麦芽糖的生产和发展应用研究. 轻工科技, 2012, 6-7. Lu T T. Research on the Production and Application of Isomalto-oligosaccharide. Light Industry Science and Technology, 2012, 6-7.

[9] Wang J H, Tsai M Y, Lee G C, et al. Construction of a recombinant thermostable β-amylase-trehalose synthase bifunctional enzyme for facilitating the conversion of starch to trehalose. Journal of agricultural and food chemistry, 2007, 55: 1256-1263.

[10] Shibuya I, Tamura G, Shima H, et al. Construction of an alpha-amylase/glucoamylase fusion gene and its expression in Saccharomyces cerevisiae. Bioscience, biotechnology, and biochemistry, 1992, 56: 884-889.

[11] Moraes L, Oliver S. Development of yeast strains for the efficient utilisation of starch: evaluation of constructs that express α-amylase and glucoamylase separately or as bifunctional fusion proteins. Applied microbiology and biotechnology, 1995, 43: 1067-1076.

[12] Birol G, Ilsen n Z, Kirdar B, et al. Ethanol production and fermentation characteristics of recombinant saccharomyces cerevisiae strains grown on starch. Enzyme and microbial technology, 1998, 22: 672-677.

[13] Moraes L, Spartaco A. Purification and some properties of an α-amylase glucoamylase fusion protein from Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 1999, 15: 561-564.

[14] Altinta? M M, Kirdar B, nsan Z I, et al. Cybernetic modelling of growth and ethanol production in a recombinant Saccharomyces cerevisiae strain secreting a bifunctional fusion protein. Process Biochemistry, 2002, 37: 1439-1445.

[15] Altinta? M M, Lgen K Ö, Kirdar B, et al. Optimal substrate feeding policy for fed-batch cultures of S. cerevisiae expressing bifunctional fusion protein displaying amylolytic activities. Enzyme and microbial technology, 2003, 33: 262-269.

[16] Akir T, Arga K Y, Altinta? M M, et al. Flux analysis of recombinant Saccharomyces cerevisiae YPB-G utilizing starch for optimal ethanol production. Process biochemistry, 2004, 39: 2097-2108.

[17] Kroumov A D, Aparecido N. Development of new unstructured model for simultaneous saccharification and fermentation of starch to ethanol by recombinant strain. Biochemical engineering journal, 2006, 28: 243-255.

[18] Kim Y M, Ko E A, Kang H K, et al. Construction, expression and characterization of fusion enzyme from Arthrobacter oxydans dextranase and Klebsiella pneumoniae amylase. Biotechnology letters, 2009, 31: 1019-1024.

[19] Ohdan K, Kuriki T, Takata H, et al. Introduction of Raw Starch-Binding Domains intoBacillus subtilis α-Amylase by Fusion with the Starch-Binding Domain of Bacillus Cyclomaltodextrin Glucanotransferase. Applied and environmental microbiology, 2000, 66: 3058-3064.

[20] Juge N, Nhr J, Marie-Franoise, et al. The activity of barley α-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2006, 1764: 275-284.

[21] Hua Y W, Chi M C, Lo H F, et al. Fusion of Bacillus stearothermophilus leucine aminopeptidase II with the raw-starch-binding domain of Bacillus sp. strain TS-23 α-amylase generates a chimeric enzyme with enhanced thermostability and catalytic activity. Journal of Industrial Microbiology and Biotechnology, 2004, 31: 273-277.

[22] An J M, Kim Y K, Lim W J, et al. Evaluation of a novel bifunctional xylanase-cellulase constructed by gene fusion. Enzyme and microbial technology, 2005, 36: 989-995.

[23] Hong S Y, Lee J S, Cho K M, et al. Assembling a novel bifunctional cellulase-xylanase from Thermotoga maritima by end-to-end fusion. Biotechnology letters, 2006, 28: 1857-1862.

[24] Hong S Y, Lee J S, Cho K M, et al. Construction of the bifunctional enzyme cellulase-β-glucosidase from the hyperthermophilic bacterium Thermotoga maritima. Biotechnology letters, 2007, 29: 931-936.

[25] Lee H L, Chang C K, Teng K H, et al. Construction and characterization of different fusion proteins between cellulases and β-glucosidase to improve glucose production and thermostability. Bioresource technology, 2011, 102: 3973-3976.

[26] 张树政, 金城, 杜昱光. 糖生物工程. 北京: 化学工业出版社, 2012. Zhang S Z, Jin C, Du Y G. Glycobiology and Glycoengineering. Beijing: Chemical Industry Press, 2012.

[27] Paul F, Oriol E, Auriol D, et al. Acceptor reaction of a highly purified dextransucrase with maltose and oligosaccharides. Application to the synthesis of controlled-molecular-weight dextrans. Carbohydrate research, 1986, 149: 433-441.

[28] John F. Relative, quantitative effects of acceptors in the reaction of Leuconostoc mesenteroides B-512F dextransucrase. Carbohydrate research, 1983, 121: 279-286.

[29] Alcalde M, Plou F J, Gómez S, et al. Immobilization of native and dextran-free dextransucrases from Leuconostoc mesenteroides NRRL B-512F for the synthesis of glucooligosaccharides. Biotechnology techniques, 1999, 13: 749-755.

[30] Kim Y M, Seo M Y, Kang H K, et al. Construction of a fusion enzyme of dextransucrase and dextranase: Application for one-step synthesis of isomalto-oligosaccharides. Enzyme and Microbial Technology, 2009, 44: 159-164.

[31] Ryu H J, Jin X j, Lee J H, et al. Optimal expression and characterization of a fusion enzyme having dextransucrase and dextranase activities. Enzyme and Microbial Technology, 2010, 47: 212-215.

[32] Pascale D D, Lernia I D, Sasso M, et al. A novel thermophilic fusion enzyme for trehalose production. Extremophiles, 2002, 6: 463-468.

[33] Winter R T, Tomas E Van Den Berg, Colpa D I, et al. Functionalization of Oxidases with Peroxidase Activity Creates Oxiperoxidases: A New Breed of Hybrid Enzyme Capable of Cascade Chemistry. ChemBioChem, 2012, 13: 252-258.

[34] Kim G J, Lee D E, Kim H S. Construction and Evaluation of a Novel Bifunctional N-Carbamylase-d-Hydantoinase Fusion Enzyme. Applied and environmental microbiology, 2000, 66: 2133-2138.

[35] Ostermeier M, Lutz S. The creation of ITCHY hybrid protein libraries/directed evolution library creation. Humana Press, 2003: 129-141.

[36] Ostermeier M, Nixon A E, Shim J H, et al. Combinatorial protein engineering by incremental truncation. Proceedings of the National Academy of Sciences, 1999, 96: 3562-3567.

[37] Lutz S, Ostermeier M. Preparation of SCRATCHY Hybrid Protein Libraries. Directed Evolution Library Creation, 2003, 231(1): 143-151.

[38] Stefan L, Ostermeier M, Moore G L, et al. Creating multiple-crossover DNA libraries independent of sequence identity. Proceedings of the National Academy of Sciences, 2001, 98: 11248-11253.

[39] Sheng Y J, Li S, Gou X J, et al. The hybrid enzymes from α-aspartyl dipeptidase and l-aspartase. Biochemical and biophysical research communications, 2005, 331: 107-112.

[40] Tang S Y, Le Q T, Shim J H, et al. Enhancing thermostability of maltogenic amylase from Bacillus thermoalkalophilus ET2 by DNA shuffling. FEBS Journal, 2006, 273: 3335-3345.

[41] Jones A, Lamsa M, Frandsen T P, et al. Directed evolution of a maltogenic α-amylase from Bacillus sp. TS-25. Journal of biotechnology, 2008, 134: 325-333.

[42] Wang Q, Xia Y Z, Chen Q, et al. Incremental truncation of PHA synthases results in altered product specificity. Enzyme and microbial technology, 2012, 50: 293-297.

[43] Pei X Q, Yi Z L, Tang C G, et al. Three amino acid changes contribute markedly to the thermostability of β-glucosidase BglC from Thermobifida fusca. Bioresource technology, 2011, 102: 3337-3342.

[1] ZHOU Yong, XU Gang, YANG Li-rong, WU Jian-ping. Effects of Signal Peptides's Optimization on the Secretion of Lipase S in Bacillus subtilis[J]. China Biotechnology, 2015, 35(9): 42-49.
[2] WEN Sai, LIU Huai-ran, XU Dan-dan . Advances in Research on Lysozyme and Strategies for New Antimicrobial Activity[J]. China Biotechnology, 2015, 35(8): 116-125.
[3] TANG Yu-lan, CHEN Zuan-guang, CHENG Zhi-yi. Research Progress in Multi-enzyme Co-immobilization Reaction Systems[J]. China Biotechnology, 2015, 35(1): 82-87.
[4] WANG Hao, WU Li, ZHU Xiao-hua, LIU Wang-wang, YANG Gong-ming. Progress and Prospect of Chitin Deacetylase[J]. China Biotechnology, 2015, 35(1): 96-103.
[5] WANG Wei-wei, Tang Liang, ZHOU Wen-long, YANG Yan, GAO Bo, ZHAO Yun-Feng, WANG Wei. Progress in the Biosynthesis and Metabolism of Glutathione[J]. China Biotechnology, 2014, 34(7): 89-95.
[6] GUO Jiao-jie, XUE Yong-chang, XU Shu-jing, ZHANG Cai-feng, HE Guang-zheng, JU Jian-song. D-amino Acid Oxidase:Update and Review[J]. China Biotechnology, 2010, 30(11): 106-111.
[7] HU Wei- Ding-Chi- Yan-Meng- Hu-Lin. Expression, Purification and Enzymatic Characterization of Thermophilic Xylose Isomerase In Escherichia coli[J]. China Biotechnology, 2009, 29(02): 65-70.
[8] QI Xianghui Tian LIANG. Molecular Cloning, Co-expression and Characterization of dhaF and dhaG Genes Encoding Glycerol Dehydratase Reactivating Factor of Citrobacter freundii[J]. China Biotechnology, 2009, 29(01): 39-43.