Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (9): 1-9    DOI: 10.13523/j.cb.2103013
    
Role and Mechanism of Metformin in Oligodendrocyte Precursor Cell Differentiation
TAN Pei-lin1,2,ZHANG Ying2,ZHANG Jun1,GAO Xiao1,WANG Shu-kun2,HOU Lin1,YUAN Zeng-qiang1,2,**()
1 School of Basic Medicine, Qingdao 266071, China
2 Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
Download: HTML   PDF(1742KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:To demonstrate the role of metformin in oligodendrocyte precursor cell (OPC) differentiation and preliminarily discuss the molecular mechanism.Methods:OPC was directly isolated and purified by immune adsorption from the brain and identified using immunofluorescence. Firstly, the concentration of metformin was decided through cell viability assay. Then, the effects of metformin on OPC-differentiation related positive cells, the mRNA or protein level were analyzed by immunofluorescence, flow cytometry, qRT-PCR, and western blot.Results:High purity of primary cells were obtained. CCK8 assay showed that there is no significant toxicity of metformin (<100 μmol/L) on cell viability. Moreover, the significant increasement of PDGFRα+OLIG2+ and MBP+ cells, up-regulation levels of Mag, Olig2, Mbp and Sox10 mRNA and OLIG2, MBP protein were detected in OPC after metformin treatment. Mechanically, compared to the control group, RAS, p-MEK and p-ERK proteins were significantly increased after metformin treatment for 5min in Oli-neu cells and OPC. Conclusion:Metformin promotes the differentiation of oligodendrocyte precursor cells through the RAS-MEK-ERK signaling pathway.



Key wordsMetformin      Oligodendrocyte precursor cells(OPCs)      Demyelinating diseases     
Received: 09 March 2021      Published: 30 September 2021
ZTFLH:  Q819  
Corresponding Authors: Zeng-qiang YUAN     E-mail: zyuan620@yahoo.com
Cite this article:

TAN Pei-lin,ZHANG Ying,ZHANG Jun,GAO Xiao,WANG Shu-kun,HOU Lin,YUAN Zeng-qiang. Role and Mechanism of Metformin in Oligodendrocyte Precursor Cell Differentiation. China Biotechnology, 2021, 41(9): 1-9.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2103013     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I9/1

Name Sequence (5'-3')
Mag-Fp CTGCCGCTGTTTTGGATAATGA
Mag-Rp CATCGGGGAAGTCGAAACGG
Mbp-Fp GACCATCCAAGAAGACCCCAC
Mbp-Rp GCCATAATGGGTAGTTCTCGTGT
Olig2-Fp GGGAGGTCATGCCTTACGC
Olig2-Rp CTCCAGCGAGTTGGTGAGC
Sox10-Fp ACACCTTGGGACACGGTTTTC
Sox10-Rp TAGGTCTTGTTCCTCGGCCAT
Gfap-Fp CGGAGACGCATCACCTCTG
Gfap-Rp AGGGAGTGGAGGAGTCATTCG
β-actin-Fp GGCTGTATTCCCCTCCATCG
β-actin-Rp CCAGTTGGTAACAATGCCATGT
Table 1 qRT-PCR primers
Fig.1 Isolation and cultivation of oligodendrocyte precursor cells (a) Flowchart showing the isolation and cultivation of OPC in vitro (b) Immunofluorescence labeling of PDGFRα (red) and OLIG2 (green) in cultured cells
Fig.2 Effect of metformin on cell viability and protein expression (a) Western blot analysis of MAG, ALDH1L using indicated antibodies in Oli-neu cells after metformin (0, 100 μmol/L, 300 μmol/L, 900 μmol/L) treatment for 48 h (b) Western blot analysis of OLIG2, MBP, ALDH1L1, GFAP in OPC after metformin treatment for 48 h (c) CCK8 assay showed relative cell viability in OPC after metformin treatment
Fig.3 Metformin modulates OPC differentiation (a) Immunofluorescence labeling of PDGFRα (green) and OLIG2 (red) in cells after 100 μmol/L metformin treatment for 48 h (b) Quantification of the percentage of PDGFRα+OLIG2+ cells *** P< 0.001 (c),(d) Flow cytometry analysis of PDGFRα in living cells after 100 μmol/L metformin treatment for 48 h (e) Quantification of the percentage of PDGFRα+ cells *** P<0.001 (f) Immunostainings of MBP (green) in cells treated with metformin for 48 h (g) Quantification of MBP+ cells *** P<0.001 (h) The mRNA levels of Mag, Mbp, Olig2, Sox10 and Gfap in primary cells after 100 μmol/L metformin treatment n=4 each group, * P< 0.05, ** P<0.01 (i) Western blot analysis of protein levels (OLIG2, MBP, ALDH1L1, GFAP) in OPCs treated with metformin for 48 h
Fig.4 The mechanism of metformin modulating OPC differentiation (a) Immunoblotting analysis of RAS, p-MEK, MEK, p-ERK, ERK protein levels in Oli-neu cells after metformin treatment for 0, 5, 10 and 30 min (b) Immunoblotting analysis of the protein expression in OPC after metformin treatment for 5 min (c) Quantification of protein expression * P<0.05, *** P<0.001 (d) The model depicts the role and mechanism of metformin in oligodendrocyte precursor cell differentiation
Fig.5 Effect of metformin on oligodendrocytes Western blot analysis of p-FoxO3a, FoxO3a expression in cells after 100μmol/L metformin treatment for 0, 5, 10 and 30 min
[1]   Donkels C, Peters M, Fariña Núñez M T, et al. Oligodendrocyte lineage and myelination are compromised in the gray matter of focal cortical dysplasia type IIa. Epilepsia, 2020, 61(1):171-184.
doi: 10.1111/epi.v61.1
[2]   Benamer N, Vidal M, Balia M, et al. Myelination of parvalbumin interneurons shapes the function of cortical sensory inhibitory circuits. Nature Communications, 2020, 11:5151.
doi: 10.1038/s41467-020-18984-7
[3]   Bradl M, Lassmann H. Oligodendrocytes: biology and pathology. Acta Neuropathologica, 2010, 119(1):37-53.
doi: 10.1007/s00401-009-0601-5
[4]   Groves A K, Barnett S C, Franklin R J M, et al. Repair of demyelinated lesions by transplantation of purified 0-2A progenitor cells. Nature, 1993, 362(6419):453-455.
doi: 10.1038/362453a0
[5]   Fünfschilling U, Supplie L M, Mahad D, et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature, 2012, 485(7399):517-521.
doi: 10.1038/nature11007
[6]   Harris J J, Attwell D. The energetics of CNS white matter. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2012, 32(1):356-371.
doi: 10.1523/JNEUROSCI.3430-11.2012
[7]   Lee Y, Morrison B M, Li Y, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature, 2012, 487(7408):443-448.
doi: 10.1038/nature11314
[8]   Rinholm J E, Hamilton N B, Kessaris N, et al. Regulation of oligodendrocyte development and myelination by glucose and lactate. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2011, 31(2):538-548.
doi: 10.1523/JNEUROSCI.3516-10.2011
[9]   Oluich L J, Stratton J A S, Xing Y L, et al. Targeted ablation of oligodendrocytes induces axonal pathology independent of overt demyelination. The Journal of Neuroscience, 2012, 32(24):8317-8330.
doi: 10.1523/JNEUROSCI.1053-12.2012
[10]   Dubois-Dalcq M, Armstrong R. The cellular and molecular events of central nervous system remyelination. BioEssays, 1990, 12(12):569-576.
pmid: 2080911
[11]   Snaidero N, Möbius W, Czopka T, et al. Myelin membrane wrapping of CNS axons by PI(3, 4, 5)P3-dependent polarized growth at the inner tongue. Cell, 2014, 156(1-2):277-290.
doi: 10.1016/j.cell.2013.11.044 pmid: 24439382
[12]   Almeida R G, Lyons D A. On myelinated axon plasticity and neuronal circuit formation and function. The Journal of Neuroscience, 2017, 37(42):10023-10034.
doi: 10.1523/JNEUROSCI.3185-16.2017
[13]   Fields R D. A new mechanism of nervous system plasticity: activity-dependent myelination. Nature Reviews Neuroscience, 2015, 16(12):756-767.
doi: 10.1038/nrn4023
[14]   Yuen T J, Silbereis J C, Griveau A, et al. Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell, 2014, 158(2):383-396.
doi: 10.1016/j.cell.2014.04.052
[15]   Tanaka Y, Konishi A, Obinata H, et al. Metformin activates KDM2A to reduce rRNA transcription and cell proliferation by dual regulation of AMPK activity and intracellular succinate level. Scientific Reports, 2019, 9:18694.
doi: 10.1038/s41598-019-55075-0 pmid: 31822720
[16]   Largani S H H, Borhani-Haghighi M, Pasbakhsh P, et al. Oligoprotective effect of metformin through the AMPK-dependent on restoration of mitochondrial hemostasis in the cuprizone-induced multiple sclerosis model. Journal of Molecular Histology, 2019, 50(3):263-271.
doi: 10.1007/s10735-019-09824-0
[17]   Pernicova I, Korbonits M. Metformin:mode of action and clinical implications for diabetes and cancer. Nature Reviews Endocrinology, 2014, 10(3):143-156.
doi: 10.1038/nrendo.2013.256 pmid: 24393785
[18]   Zakikhani M, Dowling R, Fantus I G, et al. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Research, 2006, 66(21):10269-10273.
pmid: 17062558
[19]   Barzilai N, Crandall J P, Kritchevsky S B, et al. Metformin as a tool to target aging. Cell Metabolism, 2016, 23(6):1060-1065.
doi: S1550-4131(16)30229-7 pmid: 27304507
[20]   Zhang H H, Guo X L. Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemotherapy and Pharmacology, 2016, 78(1):13-26.
doi: 10.1007/s00280-016-3037-3
[21]   Qi B X, Hu L B, Zhu L, et al. Metformin attenuates cognitive impairments in hypoxia-ischemia neonatal rats via improving remyelination. Cellular and Molecular Neurobiology, 2017, 37(7):1269-1278.
doi: 10.1007/s10571-016-0459-8
[22]   Abd-Elsameea A A, Moustaf A A, Mohamed A M. Modulation of the oxidative stress by metformin in the Cerebrum of rats exposed to global cerebral ischemia and ischemia/reperfusion. European Review for Medical and Pharmacological Sciences, 2014, 18(16):2387-2392.
doi: 7714 pmid: 25219842
[23]   Venna V R, Li J, Hammond M D, et al. Chronic metformin treatment improves post-stroke angiogenesis and recovery after experimental stroke. The European Journal of Neuroscience, 2014, 39(12):2129-2138.
doi: 10.1111/ejn.2014.39.issue-12
[24]   Liu Y Q, Tang G H, Li Y N, et al. Metformin attenuates blood-brain barrier disruption in mice following middle cerebral artery occlusion. Journal of Neuroinflammation, 2014, 11:177.
doi: 10.1186/s12974-014-0177-4
[25]   Tao L, Li D, Liu H X, et al. Neuroprotective effects of metformin on traumatic brain injury in rats associated with NF-κB and MAPK signaling pathway. Brain Research Bulletin, 2018, 140:154-161.
doi: S0361-9230(17)30678-0 pmid: 29698747
[26]   Sanadgol N, Barati M, Houshmand F, et al. Metformin accelerates myelin recovery and ameliorates behavioral deficits in the animal model of multiple sclerosis via adjustment of AMPK/Nrf2/mTOR signaling and maintenance of endogenous oligodendrogenesis during brain self-repairing period. Pharmacological Reports, 2020, 72(3):641-658.
doi: 10.1007/s43440-019-00019-8 pmid: 32048246
[27]   Houshmand F, Barati M, Golab F, et al. Metformin-induced AMPK activation stimulates remyelination through induction of neurotrophic factors, downregulation of NogoA and recruitment of Olig2+ precursor cells in the cuprizone murine model of multiple sclerosis. DARU Journal of Pharmaceutical Sciences, 2019, 27(2):583-592.
doi: 10.1007/s40199-019-00286-z
[28]   Neumann B, Baror R, Zhao C, et al. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell, 2019, 25(4): 473-485.e8.
doi: S1934-5909(19)30350-9 pmid: 31585093
[29]   Cosgrove B D, Gilbert P M, Porpiglia E, et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nature Medicine, 2014, 20(3):255-264.
doi: 10.1038/nm.3464
[30]   Cantuti-Castelvetri L, Fitzner D, Bosch-Queralt M, et al. Defective cholesterol clearance limits remyelination in the aged central nervous system. Science, 2018, 359(6376):684-688.
doi: 10.1126/science.aan4183 pmid: 29301957
[31]   张莹, 孔祥熙, 侯琳, 等. Ozanimod(RPC1063)在少突胶质前体细胞分化中的作用和机制. 中国生物工程杂志, 2020, 40(6):10-19.
[31]   Zhang Y, Kong X X, Hou L, et al. Role and mechanism of ozanimod(RPC1063) in oligodendrocyte precursor cell differentiation. China Biotechnology, 2020, 40(6):10-19.
[32]   Wang J, He X L, Meng H Y, et al. Robust myelination of regenerated axons induced by combined manipulations of GPR17 and microglia. Neuron, 2020, 108(5): 876-886.e4.
doi: 10.1016/j.neuron.2020.09.016
[33]   Mathys H, Davila-Velderrain J, Peng Z Y, et al. Single-cell transcriptomic analysis of Alzheimer's disease. Nature, 2019, 570(7761):332-337.
doi: 10.1038/s41586-019-1195-2
[34]   Ma T C, Buescher J L, Oatis B, et al. Metformin therapy in a transgenic mouse model of Huntington's disease. Neuroscience Letters, 2007, 411(2):98-103.
doi: 10.1016/j.neulet.2006.10.039
[35]   Sridhar G R. Emerging links between type 2 diabetes and Alzheimer's disease. World Journal of Diabetes, 2015, 6(5):744.
doi: 10.4239/wjd.v6.i5.744
[36]   Khallaghi B, Safarian F, Nasoohi S, et al. Metformin-induced protection against oxidative stress is associated with AKT/mTOR restoration in PC12 cells. Life Sciences, 2016, 148:286-292.
doi: 10.1016/j.lfs.2016.02.024 pmid: 26874027
[37]   Nath N, Khan M, Paintlia M K, et al. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. Journal of Immunology, 2009, 182(12):8005-8014.
doi: 10.4049/jimmunol.0803563
[38]   S Paintlia A. Combinatorial effect of metformin and lovastatin impedes T-cell autoimmunity and neurodegeneration in experimental autoimmune encephalomyelitis. Journal of Clinical & Cellular Immunology, 2013, 4(3). DOI: 10.4172/2155-9899.1000149.
doi: 10.4172/2155-9899.1000149
[39]   Yun H E, Park S, Kim M J, et al. AMP-activated protein kinase mediates the antioxidant effects of resveratrol through regulation of the transcription factor FoxO1. The FEBS Journal, 2014, 281(19):4421-4438.
doi: 10.1111/febs.2014.281.issue-19
[40]   Sun Y F, Tian T, Gao J, et al. Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice. Journal of Neuroimmunology, 2016, 292:58-67.
doi: 10.1016/j.jneuroim.2016.01.014
[1] . [J]. China Biotechnology, 2021, 41(12): 1-3.
[2] WU Han-rong,WANG Ying,HUANG Ying-ming,LI Dong-xue,LI Zhi-fei,FANG Zi-han,FAN Lin. Promote the Innovation and Transformation of Biotechnology by Base Platform[J]. China Biotechnology, 2021, 41(12): 141-147.
[3] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[4] LENG Yan,SUN Kang-tai,LIU Qian-qian,PU A-qing,LI Xiang,WAN Xiang-yuan,WEI Xun. Trends of Global Gene-edited Crops Supervision[J]. China Biotechnology, 2021, 41(12): 24-29.
[5] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[6] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[7] YIN Fang-bing,WANG Cheng,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Dissecting Genetic Architecture and Formation Mechanism of Maize Ear Traits[J]. China Biotechnology, 2021, 41(12): 30-46.
[8] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[9] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[10] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[11] WANG Yan-bo,WEI Jia,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize[J]. China Biotechnology, 2021, 41(12): 88-102.
[12] MAO Kai-yun,LI Rong,LI Dan-dan,ZHAO Ruo-chun,FAN Yue-lei,JIANG Hong-bo. Analysis of the Current Status of Global Bispecific Antibody Development[J]. China Biotechnology, 2021, 41(11): 110-118.
[13] WU Han-rong,WANG Ying,YANG Li,GE Yao,FAN Ling. Current Situation and Development Suggestions of China’s Biotechnology Base Platform[J]. China Biotechnology, 2021, 41(11): 119-123.
[14] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[15] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.