Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (11): 76-83    DOI: 10.13523/j.cb.20181110
    
Research Progress of Antibacterial Cyclopeptides
Jia-ao GE1,Chang LIU1,Jian-gang GONG2,Yan-qin LIU1,**()
1. College of Science and Engineering, Agricultural University of Hebei, Cangzhou 061100, China
2. College of Food Science and Technology, Agricultural University of Hebei, Baoding 071000, China
Download: HTML   PDF(452KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In view of the adverse effects of avian bacterial diseases on the healthy development of the poultry industry, there is an urgent need to develop new sensitive antimicrobial agents that improve bacterial resistance so as to achieve the purpose of treating bacterial diseases. Cyclic peptides are candidates for antibacterials because they have more biological activities and medicinal properties than linear peptides. The discovery of natural antibacterial cyclic peptides, the synthesis of antibacterial cyclic peptides and the application status of antibacterial cyclic peptide drugs were mainly reviewed. It is expected to help readers to further understand the research situation of antibacterial cyclic peptides and provide assistance for the development of new antibacterial cyclic peptide drugs.



Key wordsCyclic peptides      Antibacterial activity      Antibacterial mechanism      Bacterial diseases      Bacterial drug resistance     
Received: 04 June 2018      Published: 06 December 2018
ZTFLH:  Q514+.3  
Corresponding Authors: Yan-qin LIU     E-mail: liuyqjiang@163.com
Cite this article:

Jia-ao GE,Chang LIU,Jian-gang GONG,Yan-qin LIU. Research Progress of Antibacterial Cyclopeptides. China Biotechnology, 2018, 38(11): 76-83.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20181110     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I11/76

合成方法名称 基本原理 合成实物
生物合成 非核糖体方法即绕开核糖体,不使用mRNA作为模板、tRNA不作为携带工具,使用二十种氨基酸以外的其他化合物合成得到的环肽 天然青霉素
万古霉素
达托霉素
化学合成液相法 将脱保护后的线性肽前体直接在缩合剂的缩合下成环,也可将一端(一般为C端)先活化,然后成环 目前都采用固相法
化学合成固相法 先将要合成肽链末端氨基酸的羧基通过适当连接分子键合于不溶性高分子载体上,然后以此结合在固相载体上的氨基酸作为氨基组分,经过脱去氨基保护基并同过量的活化羧基组分反应接长肽链,达到所需要合成肽链的长度后,再选择适当试剂除去侧链保护基和从树脂上裂解产物 多黏菌素
Telavancin
化学合成二硫键法 两个游离的巯基经过氧化作用形成 S-S 共价键,而在生物体内的很多激素、酶当中也发现了二硫键的存在,并且二硫键的存在可以影响多肽的空间构象和生物活性,因此我们可以通过二硫键连接形成的环肽,并对环肽进行结构修饰,提高环肽的生物活性。 拟环状β防御素
基因工程 通过引入携带NRPS基因的表达质粒,合成达托霉素类脂肽的肽核心,随后与期望的酰基链偶合,可以生成一系列生物活性脂肽。 达托霉素A54145
组合合成 在相同条件下一次同步合成一系列化合物(亦称化合物库)。 Tyrocidine A类似物
Table 1 Comparison of antibacterial cyclic peptide synthesis methods
抗菌环肽名称 来源 抗菌对象 抗菌效果 抗菌机制 开发阶段
短杆菌肽S 从土壤细菌Aneurinibacillu migulanus中提取 治疗革兰氏阳性菌、革兰氏阴性菌及部分真菌引起的感染 表现出强烈的抗菌活性 破坏脂质膜和增强细菌细胞质膜的通透性 已上市
多黏菌素B 由多黏芽孢杆菌产生的一组多肽类抗生素 治疗革兰氏阴性菌(尤其是耐药性革兰氏阴性菌)引起的感染 只对大多数革兰氏阴性杆菌有效 三种说法:①破坏细胞膜;②因羟基自由基的积累破坏细菌DNA;③中和内毒素,抑制内毒素的释放及其活力,进一步达到抑制炎症因子释放 已上市
多黏菌素E 由某些细菌多黏类芽孢杆菌菌株产生的抗生素 治疗大多数革兰氏阴性杆菌引起的感染 只对大多数革兰氏阴性杆菌有效 与多黏菌素B作用机制相同 已上市
万古霉素 从采集Borneo土壤中的微生物发酵产物中分离得到 治疗革兰氏阳性菌引起的感染 对金黄色葡萄球菌、肺炎链球菌等作用强 抑制细胞壁合成 已上市
达托霉素 从玫瑰孢链霉菌(Streptomyces roseosporus)发酵液中提取得到 治疗革兰氏阳性菌引起的复杂皮肤感染和结构性皮肤感染 只对革兰氏阳性菌有杀菌作用 破坏细胞膜 已上市
Cubicin
(注射用达
托霉素)
由玫瑰孢菌发酵产生的半合成抗生素 治疗由革兰氏阳性病原体引起的皮肤和皮肤结构感染 只对革兰氏阳性菌有杀菌作用 破坏细胞膜 已上市
Nisin 由乳酸乳球菌(Lactococcus lactis)产生的多环类抗菌肽 杀死或抑制引起食品腐败的革兰氏阳性菌 对产生孢子的细菌有很强的抑制作用 破坏细胞质膜 已上市
普那霉素 由始旋链霉菌产生的一种链阳性菌素类抗生素 治疗顽固性革兰氏阳性菌感染的特选药物 对大多数革兰氏阳性菌均具有较强的杀菌活性 抑制蛋白质合成 已上市
抗菌环肽名称 来源 抗菌对象 抗菌效果 抗菌机制 开发阶段
Telavancin 半合成的环脂糖肽类药物 治疗复杂性皮肤及皮肤结构感染/医院获得性感染 对常见皮肤软组织感染病原菌及引起肺炎的革兰氏阳性菌具有突出的体外抗菌活性 细菌细胞壁合成抑制剂 已上市
Dalbavancin 半合成的环脂糖肽类药物 治疗复杂性皮肤及皮肤结构感染 对革兰氏阳性菌具有优良的抗菌活性 细菌细胞壁合成抑制剂 已上市
Oritavancin 半合成的环脂糖肽类药物 治疗革兰氏阳性的皮肤感染 对革兰氏阳性具有抗菌活性 细菌细胞壁合成抑制剂 已上市
POL7080 使用阳离子抗菌肽ProtegrinⅠ作为出发点,对肽库进行迭代修改和筛选 治疗绿脓假单胞菌感染,革兰氏阴性菌感染 具有较强的抗菌活性 LptD同源蛋白抑制剂,抑制外膜的生物合成 Ⅱ期
Table 2 Development status of some antibacterial cyclic peptide drugs
[1]   Ćupić V, TurubatoviĆ L, AntonijeviĆ B , et al. Rational use of drugs in veterinary medicine and food safety. Journal of Hygienic Engineering and Design, 2013,4:20-25.
[2]   Altekruse S F, Cohen M L, Swerdlow D L . Emerging foodborne diseases. Emerging Infectious Diseases, 1997,3(3):285-293.
doi: 10.3201/eid0303.970304
[3]   Mor-Mur M, Yuste J . Emerging bacterial pathogens in meat and poultry: An Overview. Food and Bioprocess Technology, 2009,3(1):24-35.
doi: 10.1007/s11947-009-0189-8
[4]   Jennings J L, Sait L C, Perrett C A , et al. Campylobacter jejuni is associated with, but not sufficient to cause vibrionic hepatitis in chickens. Vet Microbiol, 2011,149(1-2):193-199.
doi: 10.1016/j.vetmic.2010.11.005 pmid: 21112163
[5]   Chaves Hernández A J . Poultry and avian diseases. In: Encyclopedia of agriculture and food systems. Oxford: Academic Press, 2014: 504-520.
[6]   Hoon J S . Cyclic Peptides as therapeutic agents and biochemical tools. Biomolecules & Therapeutics, 2012,20(1):19-26.
doi: 10.4062/biomolther.2012.20.1.019 pmid: 3792197
[7]   Borthwick A D . 2, 5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Cheminform, 2012,112(7):3641-3716.
doi: 10.1002/chin.201238239 pmid: 22575049
[8]   Listed N . Discovery and applications of naturally occurring cyclic peptides. Drug Discovery Today Technologies, 2012,9(1):1-70.
doi: 10.2174/157016312799304534
[9]   Gause G F, Brazhnikova M G . Gramicidin S and its use in the treatment of infected wounds. Nature, 1944,154(3918):703.
doi: 10.1038/154703a0
[10]   Ovchinnikov Y A, Ivanov V T . ChemInform abstract: conformational states and biological activity of cyclic peptides. Tetrahedron, 1975,31(18):2177-2209.
doi: 10.1016/0040-4020(75)80216-X
[11]   Conti E, Stachelhaus T, Marahiel M A , et al. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. Embo Journal, 1997,16(14):4174-4183.
doi: 10.1093/emboj/16.14.4174 pmid: 9250661
[12]   Velkov T, Roberts K D, Nation R L , et al. Pharmacology of polymyxins: new insights into an 'old' class of antibiotics. Future Microbiology, 2013,8(6):711-724.
doi: 10.2217/FMB.13.39 pmid: 3852176
[13]   Yoshino N, Endo M, Kanno H , et al. Polymyxins as novel and safe mucosal adjuvants to induce humoral immune responses in mice. PLoS One, 2013,8(4):225-227.
doi: 10.1371/journal.pone.0061643 pmid: 3623863
[14]   Schäfer M, Schneider T R, Sheldrick G M . Crystal structure of vancomycin. Structure, 1996,4(12):1509-1515.
doi: 10.1016/S0969-2126(96)00156-6
[15]   Nicolaou K C, Boddy C N, Bräse S , et al. Chemistry, Biology, and Medicine of the Glycopeptide Antibiotics. Angewandte Chemie, 1999,30(45):2096-2152.
doi: 10.1002/chin.199945336 pmid: 10425471
[16]   Liskamp R M J, Rijkers D T S, Bakker S E . Bioactive macrocyclic peptides and peptide mimics. Modern Supramolecular Chemistry: Strategies for Macrocycle Synthesis, 2008, 1-27.
doi: 10.1002/9783527621484.ch1
[17]   Armando G R, Andrew S R, Kamal H . Daptomycin: an evidence-based review of its role in the treatment of Gram-positive infections. Infection & Drug Resistance, 2016,9(1):47-58.
doi: 10.2147/IDR.S99046 pmid: 27143941
[18]   Kaya S, Yilmaz G, Kalkan A , et al. Treatment of gram-positive left-sided infective endocarditis with daptomycin. Journal of Infection & Chemotherapy, 2013,19(4):698-702.
doi: 10.1007/s10156-012-0546-9 pmid: 23299359
[19]   Xing Y, Wang W, Dai S , et al. Daptomycin exerts rapid bactericidal activity against Bacillus anthracis without disrupting membrane integrity. Acta Pharmacologica Sinica, 2014,35(2):211-218.
doi: 10.1038/aps.2013.159 pmid: 4651213
[20]   Pogliano J, Pogliano N, Silverman J A . Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. Journal of Bacteriology, 2012,194(17):4494-4504.
doi: 10.1128/JB.00011-12
[21]   Huang E, Guo Y, Yousef A E . Draft genome sequence of Paenibacillus sp. strain OSY-SE, a bacterium producing the novel broad-spectrum lipopeptide antibiotic paenibacterin. Journal of Bacteriology, 2012,194(22):6306.
doi: 10.1128/JB.01506-12 pmid: 23105053
[22]   Huang E, Guo Y, Yousef A E . Biosynthesis of the new broad-spectrum lipopeptide antibiotic paenibacterin in Paenibacillus thiaminolyticus OSY-SE. Research in Microbiology, 2014,165(3):243-251.
doi: 10.1016/j.resmic.2014.02.002 pmid: 24607714
[23]   Qin C, Xu C, Zhang R , et al. On-resin cyclization and antimicrobial activity of Laterocidin and its analogues. Tetrahedron Letters, 2010,51(9):1257-1261.
doi: 10.1016/j.tetlet.2009.11.007
[24]   Kaweewan I, Hemmi H, Komaki H , et al. Isolation and structure determination of new antibacterial peptide curacomycin based on genome mining. Asian Journal of Organic Chemistry, 2017,6(12):1838-1844.
doi: 10.1002/ajoc.201700433
[25]   Gong A D, Li H P, Yuan Q S , et al. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PLoS One, 2015,10(2):0116871.
doi: 10.1371/journal.pone.0116871 pmid: 25689464
[26]   Lee Y, Phat C, Hong S C . Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides, 2017,95:94-105.
doi: 10.1016/j.peptides.2017.06.002 pmid: 28610952
[27]   Matsunaga S, Fusetani N, Konosu S . Bioactive marine metabolites VI. structure elucidation of discodermin a, an antimicrobial peptide from the marine sponge discodermia kiiensis. Tetrahedron Letters, 1985,25(45):5165-5168.
doi: 10.1016/S0040-4039(01)81553-7
[28]   Oterogonzález A J, Magalhães B S, Garciavillarino M , et al. Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. Faseb Journal, 2010,24(5):1320-1334.
doi: 10.1096/fj.09-143388 pmid: 20065108
[29]   Eom S H, Kim Y M, Kim S K . Marine bacteria: potential sources for compounds to overcome antibiotic resistance. Applied Microbiology & Biotechnology, 2013,97(11):4763-4773.
doi: 10.1007/s00253-013-4905-y pmid: 23640363
[30]   Manoharan R K, Brindha P V, Srigopalram S , et al. Studies on a marine Streptomyces fradiae BW2-7 producing glycopeptide antibiotic Vancomycin effective against skin pathogens. Sch Acad J Biosci, 2014,2(11):746-761.
[31]   Kitani S, Ueguchi T, Igarashi Y , et al. Rakicidin F, a new antibacterial cyclic depsipeptide from a marine sponge-derived Streptomyces sp. Journal of Antibiotics, 2017,71(1):139-141.
doi: 10.1038/ja.2017.92 pmid: 28765588
[32]   Kozuma S, Hirotatakahata Y, Fukuda D , et al. Identification and biological activity of ogipeptins, novel LPS inhibitors produced by marine bacterium. Journal of Antibiotics, 2016,70(1):79-83.
doi: 10.1038/ja.2016.81 pmid: 27381520
[33]   Li H Y, Matsunaga S, Fusetani N . Halicylindramides A-C, antifungal and cytotoxic depsipeptides from the marine sponge Halichondria cylindrata. Journal of Medicinal Chemistry, 1995,51(8):338-343.
doi: 10.1016/0040-4020(94)01097-J pmid: 7830276
[34]   Youssef D T, Shaala L A, Mohamed G A , et al. Theonellamide G, a potent antifungal and cytotoxic bicyclic glycopeptide from the Red Sea marine sponge Theonella swinhoei. Marine Drugs, 2014,12(4):1911-1923.
doi: 10.3390/md12041911 pmid: 24694570
[35]   Zhang X, Jacob M R, Rao R R . Antifungal cyclic peptides from the marine sponge microscleroderma herdmani. Res Rep Med Chem, 2012,2:7-14
doi: 10.1055/s-0032-1307625 pmid: 3738201
[36]   Niggemann J, Bozko P, Bruns N , et al. Baceridin, a cyclic hexapeptide from an epiphytic Bacillus strain, inhibits the proteasome. Chembiochem, 2014,15(7):1021-1029.
doi: 10.1002/cbic.201300778 pmid: 24692199
[37]   Ishihara K, Sobue M, Uemura D , et al. N -acetylgalactosamine 4,6-bissulfate in rat urine I. Isolation, identification and chemical synthesis. Biochimica Et Biophysica Acta, 1976,437(2):416-430.
doi: 10.1016/0304-4165(76)90011-8 pmid: 952926
[38]   Kohli R M, Walsh C T, Burkart M D . Biomimetic synthesis and optimization of cyclic peptide antibiotics. Nature, 2002,418(6898):658-661.
doi: 10.1038/nature00907 pmid: 12167866
[39]   Von D H, Dieckmann R, Pavela-Vrancic M . The nonribosomal code. Chemistry & Biology, 1999,6(10):273-279.
[40]   And Q X, Pei D . High-Throughput synthesis and screening of cyclic peptide antibiotics. Journal of Medicinal Chemistry, 2007; 50(13):3132-3137.
doi: 10.1021/jm070282e pmid: 2527969
[41]   Oddo A, Thomsen T T, Britt H M , et al. Modulation of backbone flexibility for effective dissociation of antibacterial and hemolytic activity in cyclic peptides. Acs Medicinal Chemistry Letters, 2016,7(8):741-745.
doi: 10.1021/acsmedchemlett.5b00400 pmid: 27563396
[42]   Abraham T, Prenner E J, Lewis R N , et al. Structure-activity relationships of the antimicrobial peptide gramicidin S and its analogs: aqueous solubility, self-association, conformation, antimicrobial activity and interaction with model lipid membranes. Biochimica et Biophysica acta, 2014,1838(5):1420-1429.
doi: 10.1016/j.bbamem.2013.12.019
[43]   Oh D, Sun J, Nasrolahi S A , et al. Antibacterial activities of amphiphilic cyclic cell-penetrating peptides against multidrug-resistant pathogens. Molecular Pharmaceutics, 2014,11(10):3528-3536.
doi: 10.1021/mp5003027 pmid: 4186684
[44]   Falanga A, Nigro E ,De Biasi M G, , et al. Cyclic peptides as novel therapeutic microbicides: engineering of human defensin mimetics. Molecules, 2017,22(7):1217.
doi: 10.3390/molecules22071217 pmid: 28726740
[45]   Scudiero O, Nigro E, Cantisani M , et al. Design and activity of a cyclic mini-β-defensin analog: a novel antimicrobial tool. International Journal of Nanomedicine, 2015,10:6523-6539.
doi: 10.2147/IJN.S89610 pmid: 4610797
[46]   Sun L, Zheng C, Webster T J . Self-assembled peptide nanomaterials for biomedical applications: promises and pitfalls. International Journal of Nanomedicine, 2017,12:73-86.
doi: 10.2217/nnm-2016-0316 pmid: 27876448
[47]   Clark T D , And L K B, Ghadiri M R. Self-assembling cyclic β3-peptide nanotubes as artificial transmembrane ion channels. Journal of the American Chemical Society, 1998,120(4):651-656.
doi: 10.1021/ja972786f
[48]   Fernandezlopez S, Kim H S, Choi E C , et al. Antibacterial agents based on the cyclic d,l-|[alpha]|-peptide architecture. Nature, 2001,412(6845):452-455.
doi: 10.1038/35086601
[49]   Zorzi A, Deyle K, Heinis C . Cyclic peptide therapeutics: past, present and future. Current Opinion in Chemical Biology, 2017,38:24-29.
doi: 10.1016/j.cbpa.2017.02.006 pmid: 28249193
[50]   Cetinkaya Y, Falk P, Mayhall C G . Vancomycin-resistant enterococci. Clinical Microbiology Reviews, 2000,13(4):686-707.
doi: 10.1128/CMR.13.4.686
[51]   Reynolds P E . Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Clinical Microbiology, 1989,8(11):943-950.
doi: 10.1007/BF01967563 pmid: 2532132
[52]   Wijesekara P N K, Kumbukgolla W W, Jayaweera J , et al. Review on usage of vancomycin in livestock and humans: maintaining its efficacy, prevention of resistance and alternative therapy. Vet Sci, 2017,4(1):6.
doi: 10.3390/vetsci4010006 pmid: 29056665
[53]   Klinker K P, Borgert S J . Beyond vancomycin: the tail of the lipoglycopeptides. Clin Ther, 2015,37(12):2619-2636.
doi: 10.1016/j.clinthera.2015.11.007 pmid: 26658277
[54]   Patel S, Ahmed S, Eswari J S . Therapeutic cyclic lipopeptides mining from microbes: latest strides and hurdles. World Journal of Microbiology & Biotechnology, 2015,31(8):1177-1193.
doi: 10.1007/s11274-015-1880-8 pmid: 26041368
[55]   Srinivas N, Jetter P, Ueberbacher B J , et al. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science, 2010,327(5968):1010-1013.
doi: 10.1126/science.1182749 pmid: 20167788
[1] TANG Xin,MAO Xin-fang,MA Bin-yun,GOU Ping. Antimicrobial Peptides: Current Status and Future Challenges[J]. China Biotechnology, 2019, 39(8): 86-94.
[2] LIU Xiao-ming, JIANG Ning, ZHANG Ai-zhong, CAI Peng. Expression of Hybrid Antimicrobial Peptides in Pichia Yeast and Identification of Its Biological Activity[J]. China Biotechnology, 2016, 36(2): 81-89.
[3] WU Chun-xu, LU Xue-mei, JIN Xiao-bao, ZHU Jia-yong. Advances in Research on Molecular Design of Cecropin-like Peptides[J]. China Biotechnology, 2016, 36(2): 96-100.
[4] LI Jian-bo, JIANG Ming-feng, WANG Yong. Tibetan Sheep Mammary Gland Lysozyme: Molecular Cloning, Prokaryotic Expression and Its Antibacterial Activity[J]. China Biotechnology, 2013, 33(8): 38-44.
[5] MING Fei-ping, YANG Jun, ZHU Jin-mei, KUANG Zhe-shi, LI Hua-zhou, XIA Feng-geng, YE Ming-qiang, WANG Hou-guang, ZHAO Xiang-jie, HUANG Zhi-feng, MA Miao-peng, SHI Ju-qing, CAI Hai-ming, ZHANG Ling-hua. Modification of 5’UTR Sequences of pPIC9K Increases Expression of Antimicrobial Peptide PR39[J]. China Biotechnology, 2013, 33(12): 86-91.
[6] ZHOU Guang-qi, MA Peng-bo, LIU Qiao, QUAN Chun-shan, FAN Sheng-di. Optimization of Culture Medium and Prediction of Antibacterial Activity by Bacillus Amyloliquefaciens Q-426 Fermentation[J]. China Biotechnology, 2013, 33(11): 21-26.
[7] XIONG Wen, YANG Xue-min, WANG Jian-hua, QUAN Chun-shan, FAN Sheng-di. Effects of DKPs on Gene Expression of the Antibacterial Substances in Bacillus amyloliquefaciens Q-426[J]. China Biotechnology, 2012, 32(03): 47-52.
[8] SHU Mei, XU Yang, XU Xi, TU Zhui. Expression and Activity Analysis of Two Anti-microbial Peptides from Aquatic Animals[J]. China Biotechnology, 2011, 31(02): 56-61.
[9] . Antibacterial Cecropin and its application On Transgenic Plants for Bacterium Resistance[J]. China Biotechnology, 2008, 28(5): 122-127.
[10] . Investigate antibiosis dynamics and antibacterial mechanisms of Antibacterial Peptides from Musca domestica Larvae[J]. China Biotechnology, 2006, 26(11): 33-39.