Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (9): 64-70    DOI: 10.13523/j.cb.2106015
    
Research Progress on miR-146a Involved in Different Diseases
ZHU Jia-hao,CHEN Ting,XI Qian-yun()
National Engineering Research Center for Breeding Swine Industry /Key Laboratory of Animal Nutrition Control in Guangdong, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
Download: HTML   PDF(460KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

miR-146a is a hot topic in recent miRNA study and keeps highly conserved in different species. It is involved in the occurrence and development of various types of diseases, such as inflammation, autoimmune diseases, cancer and obesity, and its mechanism mainly plays a role through TLR4, MyD88, NF-κB and Akt signaling pathways. In this paper, the roles and mechanisms of miR-146a in different disease processes are reviewed to provide information for further research on the regulatory role of miR-146a in various diseases.



Key wordsmiR-146a      Different diseases      Mechanism     
Received: 08 June 2021      Published: 30 September 2021
ZTFLH:  Q527  
Corresponding Authors: Qian-yun XI     E-mail: xqy0228@163.com
Cite this article:

ZHU Jia-hao,CHEN Ting,XI Qian-yun. Research Progress on miR-146a Involved in Different Diseases. China Biotechnology, 2021, 41(9): 64-70.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2106015     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I9/64

[1]   Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2):281-297.
pmid: 14744438
[2]   Esteller M. Non-coding RNAs in human disease. Nature Reviews Genetics, 2011, 12(12):861-874.
doi: 10.1038/nrg3074 pmid: 22094949
[3]   Taganov K D, Boldin M P, Chang K J, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. PNAS, 2006, 103(33):12481-12486.
doi: 10.1073/pnas.0605298103
[4]   Nakasa T, Miyaki S, Okubo A, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis & Rheumatism, 2008, 58(5):1284-1292.
doi: 10.1002/(ISSN)1529-0131
[5]   Saba R, Sorensen D L, Booth S A. MicroRNA-146a: a dominant, negative regulator of the innate immune response. Frontiers in Immunology, 2014, 5:578.
[6]   Bhaumik D, Scott G K, Schokrpur S, et al. Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene, 2008, 27(42):5643-5647.
doi: 10.1038/onc.2008.171 pmid: 18504431
[7]   Bektas A, Schurman S H, Sen R, et al. Aging, inflammation and the environment. Experimental Gerontology, 2018, 105:10-18.
doi: S0531-5565(17)30779-9 pmid: 29275161
[8]   Franceschi C, Valensin S, Lescai F, et al. Neuroinflammation and the genetics of Alzheimer's disease: the search for a pro-inflammatory phenotype. Aging Clinical and Experimental Research, 2001, 13(3):163-170.
doi: 10.1007/BF03351475
[9]   Ye E A, Steinle J J. miR-146a attenuates inflammatory pathways mediated by TLR4/NF-κB and TNFα to protect primary human retinal microvascular endothelial cells grown in high glucose. Mediators of Inflammation, 2016, 2016:3958453.
[10]   Bhaumik D, Scott G K, Schokrpur S, et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging, 2009, 1(4):402-411.
doi: 10.18632/aging.v1i4
[11]   Cillóniz C, Torres A, Niederman M, et al. Community-acquired pneumonia related to intracellular pathogens. Intensive Care Medicine, 2016, 42(9):1374-1386.
doi: 10.1007/s00134-016-4394-4
[12]   Zhou Z M, Zhu Y Y, Gao G S, et al. Long noncoding RNA SNHG16 targets miR-146a-5p/CCL5 to regulate LPS-induced WI-38 cell apoptosis and inflammation in acute pneumonia. Life Sciences, 2019, 228:189-197.
doi: 10.1016/j.lfs.2019.05.008
[13]   Li H Y, Yang H G, Wu H M, et al. Inhibitory effects of lactoferrin on pulmonary inflammatory processes induced by lipopolysaccharide by modulating the TLR4-related pathway. Journal of Dairy Science, 2021, 104(7):7383-7392.
doi: 10.3168/jds.2020-19232 pmid: 33838887
[14]   Roganović J. Downregulation of microRNA-146a in diabetes, obesity and hypertension may contribute to severe COVID-19. Medical Hypotheses, 2021, 146:110448.
doi: 10.1016/j.mehy.2020.110448
[15]   Donyavi T, Bokharaei-Salim F, Baghi H B, et al. Acute and post-acute phase of COVID-19: Analyzing expression patterns of miRNA-29a-3p, 146a-3p, 155-5p, and let-7b-3p in PBMC. International Immunopharmacology, 2021, 97:107641.
doi: 10.1016/j.intimp.2021.107641
[16]   Wang J P, Dong L N, Wang M, et al. MiR-146a regulates the development of ulcerative colitis via mediating the TLR4/MyD88/NF-κB signaling pathway. European Review for Medical and Pharmacological Sciences, 2019, 23(5):2151-2157.
doi: 17260 pmid: 30915760
[17]   Anzola A, González R, Gámez-Belmonte R, et al. miR-146a regulates the crosstalk between intestinal epithelial cells, microbial components and inflammatory stimuli. Scientific Reports, 2018, 8:17350.
doi: 10.1038/s41598-018-35338-y
[18]   Wu H, Fan H, Shou Z X, et al. Extracellular vesicles containing miR-146a attenuate experimental colitis by targeting TRAF6 and IRAK1. International Immunopharmacology, 2019, 68:204-212.
doi: 10.1016/j.intimp.2018.12.043
[19]   Chen X, Gao Q, Zhou L, et al. MiR-146a alleviates inflammation of acute gouty arthritis rats through TLR4/MyD88 signal transduction pathway. European Review for Medical and Pharmacological Sciences, 2019, 23(21):9230-9237.
doi: 19415 pmid: 31773674
[20]   Zhang Q B, Qing Y F, Yin C C, et al. Mice with miR-146a deficiency develop severe gouty arthritis via dysregulation of TRAF 6, IRAK 1 and NALP3 inflammasome. Arthritis Research & Therapy, 2018, 20(1):45.
[21]   Dalbeth N, Pool B, Shaw O M, et al. Role of miR-146a in regulation of the acute inflammatory response to monosodium urate crystals. Annals of the Rheumatic Diseases, 2015, 74(4):786-790.
doi: 10.1136/annrheumdis-2014-205409 pmid: 25646371
[22]   Wilson M S, Taylor M D, Balic A, et al. Suppression of allergic airway inflammation by helminth-induced regulatory T cells. The Journal of Experimental Medicine, 2005, 202(9):1199-1212.
doi: 10.1084/jem.20042572
[23]   Wang J, Cui Z Q, Liu L, et al. MiR-146a mimic attenuates murine allergic rhinitis by downregulating TLR4/TRAF6/NF-κB pathway. Immunotherapy, 2019, 11(13):1095-1105.
doi: 10.2217/imt-2019-0047 pmid: 31361168
[24]   Luo X, Han M M, Liu J Q, et al. Epithelial cell-derived micro RNA-146a generates interleukin-10-producing monocytes to inhibit nasal allergy. Scientific Reports, 2015, 5:15937.
doi: 10.1038/srep15937 pmid: 26526003
[25]   Zhou J, Lu Y, Wu W, et al. HMSC-derived exosome inhibited Th2 cell differentiation via regulating miR-146a-5p/SERPINB2 pathway. Journal of Immunology Research, 2021, 2021:1-11.
[26]   Crabb D W, Bataller R, Chalasani N P, et al. Standard definitions and common data elements for clinical trials in patients with alcoholic hepatitis: recommendation from the NIAAA alcoholic hepatitis consortia. Gastroenterology, 2016, 150(4):785-790.
doi: 10.1053/j.gastro.2016.02.042
[27]   Yang Z H, Zhang T, Kusumanchi P, et al. Transcriptomic analysis reveals the MicroRNAs responsible for liver regeneration associated with mortality in alcohol-associated hepatitis. Hepatology, 2021. DOI: 10.1002/hep.31994.
doi: 10.1002/hep.31994
[28]   Wu N, McDaniel K, Zhou T H, et al. Knockout of microRNA-21 attenuates alcoholic hepatitis through the VHL/NF-κB signaling pathway in hepatic stellate cells. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2018, 315(3):G385-G398.
doi: 10.1152/ajpgi.00111.2018
[29]   Garo L P, Murugaiyan G. Contribution of MicroRNAs to autoimmune diseases. Cellular and Molecular Life Sciences, 2016, 73(10):2041-2051.
doi: 10.1007/s00018-016-2167-4
[30]   Chatzikyriakidou A, Voulgari P V, Georgiou I, et al. miRNAs and related polymorphisms in rheumatoid arthritis susceptibility. Autoimmunity Reviews, 2012, 11(9):636-641.
doi: 10.1016/j.autrev.2011.11.004 pmid: 22100329
[31]   Lorenzen J, Kumarswamy R, Dangwal S, et al. MicroRNAs in diabetes and diabetes-associated complications. RNA Biology, 2012, 9(6):820-827.
doi: 10.4161/rna.20162 pmid: 22664916
[32]   Yang M L, Ye L, Wang B K, et al. Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients 1miR-146. Journal of Diabetes, 2015, 7(2):158-165.
doi: 10.1111/jdb.2015.7.issue-2
[33]   Casciato S, Mascia A, Quarato P, et al. Subacute cerebellar ataxia as presenting symptom of systemic lupus erythematosus, European Review for Medical and Pharmacological Sciences, 2018, 22(21):7401-7403.
doi: 16279 pmid: 30468487
[34]   Dai R J, Zhang Y, Khan D, et al. Identification of a common lupus disease-associated microRNA expression pattern in three different murine models of lupus. PLoS One, 2010, 5(12):e14302.
doi: 10.1371/journal.pone.0014302
[35]   Tang Y J, Luo X B, Cui H J, et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis and Rheumatism, 2009, 60(4):1065-1075.
doi: 10.1002/art.v60:4
[36]   Fu H X, Fan X P, Li M, et al. MiR-146a relieves kidney injury in mice with systemic lupus erythematosus through regulating NF-κB pathway. European Review for Medical and Pharmacological Sciences, 2019, 23(16):7024-7032.
doi: 18744 pmid: 31486503
[37]   Morgan A W, Robinson J I, Conaghan P G, et al. Evaluation of the rheumatoid arthritis susceptibility loci HLA-DRB1, PTPN22, OLIG3/TNFAIP3, STAT4 and TRAF1/C5 in an inception cohort. Arthritis Research & Therapy, 2010, 12(2):R57.
[38]   Niimoto T, Nakasa T, Ishikawa M, et al. MicroRNA-146a expresses in interleukin-17 producing T cells in rheumatoid arthritis patients. BMC Musculoskeletal Disorders, 2010, 11(1):1-11.
doi: 10.1186/1471-2474-11-1
[39]   Lu L F, Thai T H, Calado D P, et al. Foxp3-dependent MicroRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity, 2009, 30(1):80-91.
doi: 10.1016/j.immuni.2008.11.010
[40]   Iacona J R, Lutz C S. miR-146a-5p: Expression, regulation, and functions in cancer. Wiley Interdisciplinary Reviews RNA, 2019, 10(4):e1533.
[41]   Davidsson S, Andren O, Ohlson A L, et al. FOXP3+ regulatory T cells in normal prostate tissue, postatrophic hyperplasia, prostatic intraepithelial neoplasia, and tumor histological lesions in men with and without prostate cancer. The Prostate, 2018, 78(1):40-47.
doi: 10.1002/pros.v78.1
[42]   Lin S L, Chiang A, Chang D, et al. Loss of mir-146a function in hormone-refractory prostate cancer. RNA, 2008, 14(3):417-424.
doi: 10.1261/rna.874808
[43]   Liu R H, Yi B, Wei S, et al. FOXP3-miR-146-NF-κB axis and therapy for precancerous lesions in prostate. Cancer Research, 2015, 75(8):1714-1724.
doi: 10.1158/0008-5472.CAN-14-2109
[44]   Xu B, Huang Y Q, Niu X B, et al. Hsa-miR-146a-5p modulates androgen-independent prostate cancer cells apoptosis by targeting ROCK1. The Prostate, 2015, 75(16):1896-1903.
doi: 10.1002/pros.23068
[45]   Wang K P, Kim M K, Di Caro G, et al. Interleukin-17 receptor A signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity, 2014, 41(6):1052-1063.
doi: 10.1016/j.immuni.2014.11.009
[46]   Chae Y S, Kim J G, Lee S J, et al. A miR-146a polymorphism (rs2910164) predicts risk of and survival from colorectal cancer. Anticancer Research, 2013, 33(8):3233-3239.
pmid: 23898084
[47]   Zeng C Q, Huang L X, Zheng Y, et al. Expression of miR-146a in colon cancer and its significance. Nan Fang Yi Ke Da Xue Xue Bao, 2014, 34(3):396-400.
[48]   Garo L P, Ajay A K, Fujiwara M, et al. MicroRNA-146a limits tumorigenic inflammation in colorectal cancer. Nature Communications, 2021, 12:2419.
doi: 10.1038/s41467-021-22641-y
[49]   Hwang W L, Jiang J K, Yang S H, et al. MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nature Cell Biology, 2014, 16(3):268-280.
doi: 10.1038/ncb2910
[50]   Shen D W, Pouliot L M, Hall M D, et al. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacological Reviews, 2012, 64(3):706-721.
doi: 10.1124/pr.111.005637
[51]   Chen G, Umelo I A, Lv S, et al. miR-146a inhibits cell growth, cell migration and induces apoptosis in non-small cell lung cancer cells. PLoS One, 2013, 8(3):e60317.
doi: 10.1371/journal.pone.0060317
[52]   Oliver T G, Mercer K L, Sayles L C, et al. Chronic cisplatin treatment promotes enhanced damage repair and tumor progression in a mouse model of lung cancer. Genes & Development, 2010, 24(8):837-852.
doi: 10.1101/gad.1897010
[53]   Shi L, Xu Z Z, Wu G, et al. Up-regulation of miR-146a increases the sensitivity of non-small cell lung cancer to DDP by downregulating cyclin[J]. BMC Cancer, 2017, 17(1):1-14.
doi: 10.1186/s12885-016-3022-6
[54]   Chen W W, Chu S, Li H X, et al. MicroRNA-146a-5p enhances ginsenoside Rh2-induced anti-proliferation and the apoptosis of the human liver cancer cell line HepG2. Oncology Letters, 2018, 16(4):5367-5374.
[55]   Bornschein J, Rokkas T, Selgrad M, et al. Helicobacter pylori and clinical aspects of gastric cancer. Helicobacter, 2009, 14(Suppl 1):41-45.
doi: 10.1111/hel.2009.14.issue-s1
[56]   Kim Y K, Yu J, Han T S, et al. Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Research, 2009, 37(5):1672-1681.
doi: 10.1093/nar/gkp002
[57]   Xiao B, Zhu E D, Li N, et al. Increased miR-146a in gastric cancer directly targets SMAD4 and is involved in modulating cell proliferation and apoptosis. Oncology Reports, 2012, 27(2):559-566.
doi: 10.3892/or.2011.1514 pmid: 22020746
[58]   Crone S G, Jacobsen A, Federspiel B, et al. microRNA-146a inhibits G protein-coupled receptor-mediated activation of NF-κB by targeting CARD10 and COPS8 in gastric cancer. Molecular Cancer, 2012, 11(1):1-14.
doi: 10.1186/1476-4598-11-1
[59]   de Git K C G, Adan R A H. Leptin resistance in diet-induced obesity: the role of hypothalamic inflammation. Obesity Reviews, 2015, 16(3):207-224.
doi: 10.1111/obr.12243 pmid: 25589226
[60]   Nunez Lopez Y O, Garufi G, Seyhan A A. Altered levels of circulating cytokines and microRNAs in lean and obese individuals with prediabetes and type 2 diabetes. Molecular BioSystems, 2016, 13(1):106-121.
pmid: 27869909
[61]   Russo A, Bartolini D, Mensà E, et al. Physical activity modulates the overexpression of the inflammatory miR-146a-5p in obese patients. IUBMB Life, 2018, 70(10):1012-1022.
doi: 10.1002/iub.v70.10
[62]   Runtsch M C, Nelson M C, Lee S H, et al. Anti-inflammatory microRNA-146a protects mice from diet-induced metabolic disease. PLoS Genetics, 2019, 15(2):e1007970.
doi: 10.1371/journal.pgen.1007970
[63]   Wu D, Xi Q Y, Cheng X, et al. miR-146a-5p inhibits TNF-α-induced adipogenesis via targeting insulin receptor in primary porcine adipocytes. Journal of Lipid Research, 2016, 57(8):1360-1372.
doi: 10.1194/jlr.M062497
[64]   Díaz-Amarilla P, Olivera-Bravo S, Trias E, et al. Phenotypically aberrant astrocytes that promote motoneuron damage in a model of inherited amyotrophic lateral sclerosis. PNAS, 2011, 108(44):18126-18131.
doi: 10.1073/pnas.1110689108 pmid: 22010221
[65]   Gomes C, Cunha C, Nascimento F, et al. Cortical neurotoxic astrocytes with early ALS pathology and miR-146a deficit replicate gliosis markers of symptomatic SOD1G93A mouse model. Molecular Neurobiology, 2019, 56(3):2137-2158.
doi: 10.1007/s12035-018-1220-8
[66]   Barbosa M, Gomes C, Sequeira C, et al. Recovery of depleted miR-146a in ALS cortical astrocytes reverts cell aberrancies and prevents paracrine pathogenicity on microglia and motor neurons. Frontiers in Cell and Developmental Biology, 2021, 9:634355.
doi: 10.3389/fcell.2021.634355 pmid: 33968923
[67]   Campos-Melo D, Droppelmann C A, He Z P, et al. Altered microRNA expression profile in Amyotrophic Lateral Sclerosis: a role in the regulation of NFL mRNA levels. Molecular Brain, 2013, 6:26.
doi: 10.1186/1756-6606-6-26 pmid: 23705811
[68]   Sanchis-Gomar F, Perez-Quilis C, Leischik R, et al. Epidemiology of coronary heart disease and acute coronary syndrome. Annals of Translational Medicine, 2016, 4(13):256.
doi: 10.21037/atm.2016.06.33 pmid: 27500157
[69]   Ghafouri-Fard S, Gholipour M, Taheri M. Role of MicroRNAs in the pathogenesis of coronary artery disease. Frontiers in Cardiovascular Medicine, 2021, 8:632392. DOI: 10.3389/fcvm.2021.632392.
doi: 10.3389/fcvm.2021.632392 pmid: 33912599
[70]   Xue S, Zhu W J, Liu D C, et al. Circulating miR-26a-1, miR-146a and miR-199a-1 are potential candidate biomarkers for acute myocardial infarction. Molecular Medicine (Cambridge, Mass), 2019, 25(1):18.
[71]   Zhelankin A V, Stonogina D A, Vasiliev S V, et al. Circulating extracellular miRNA analysis in patients with stable CAD and acute coronary syndromes. Biomolecules, 2021, 11(7):962.
doi: 10.3390/biom11070962
[72]   Ridker P M, Rifai N, Pfeffer M, et al. Elevation of tumor necrosis factor-alpha and increased risk of recurrent coronary events after myocardial infarction. Circulation, 2000, 101(18):2149-2153.
pmid: 10801754
[73]   Padfield G J, Din J N, Koushiappi E, et al. Cardiovascular effects of tumour necrosis factor α antagonism in patients with acute myocardial infarction: a first in human study. Heart (British Cardiac Society), 2013, 99(18):1330-1335.
[74]   Pereira-Da-silva T, Napoleão P, Costa M C, et al. Association between miR-146a and tumor necrosis factor alpha (TNF-α) in stable coronary artery disease. Medicina, 2021, 57(6):575.
doi: 10.3390/medicina57060575
[1] YU Guang-hai, PENG Hai-fen, WANG Ao-yu. Research Progress of Avilamycin Biosynthesis[J]. China Biotechnology, 2021, 41(1): 94-102.
[2] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[3] CUI Zi-hong,JI Xiu-ling. Advances in Bacteria-Phage Antagonistic Coevolution[J]. China Biotechnology, 2020, 40(1-2): 140-145.
[4] ZHU Xiao-li,HUANG Cui,MA Li-li,ZHANG Chao,GONG Yue,ZHAO Wan-yu,ZHAO Xiu-fang,GUO Wen-jiao,PENG Hao,ZHANG Ji,LIANG Hui-gang. Research Advances of Novel Coronavirus Disease (COVID-19)[J]. China Biotechnology, 2020, 40(1-2): 38-50.
[5] CHENG Zi-zhao,CHEN Chu-chu,YING Lei,LI Xiao-kun,HUANG Zhi-feng. Comparison of Genomic and Infection Characteristics of Coronavirus[J]. China Biotechnology, 2020, 40(11): 56-66.
[6] HU Fu,LI Qian,ZHU Ben-Wei,NING Li-Min,YAO Zhong,SUN Yun,DU Yu-guang. Research Progress in Ulvan Lyase[J]. China Biotechnology, 2019, 39(8): 104-113.
[7] TANG Xin,MAO Xin-fang,MA Bin-yun,GOU Ping. Antimicrobial Peptides: Current Status and Future Challenges[J]. China Biotechnology, 2019, 39(8): 86-94.
[8] Fei WANG,Chun-hui HU,hao YU. Catalytic Mechanism of 6-Hydroxynicotinic Acid 3-Monooxygenase (NicC)[J]. China Biotechnology, 2019, 39(7): 15-23.
[9] Lin YANG,Zhe-yan FU,Zheng-bing LV,Jian-hong SHU. Classification and Mechanism of Immune Adjuvant[J]. China Biotechnology, 2019, 39(5): 114-119.
[10] Kai-xi JI,Dan JIAO,Zhong-kui XIE,Guo YANG,Zi-yuan DUAN. Advances and Prospects of Brown Adipocyte-Specific Gene PRDM16[J]. China Biotechnology, 2019, 39(4): 84-93.
[11] LU Zhong-teng,HU Gao-wei. Identification Methods of Novel Cell Penetrating Peptides and Application in Antitumor Therapy[J]. China Biotechnology, 2019, 39(12): 50-55.
[12] XIA Yan-mei,YU Si-yuan,YANG Han,LI Ting-dong. The Progress on The Mechanism of Cell Penetrating Peptides Mediated- Cellular Delivery of Biomolecules[J]. China Biotechnology, 2019, 39(10): 82-89.
[13] Zhong-yang YE,Huai-yu QIU,Bing-hua ZHU,Ze LI,Ye ZHU,Li-gui WANG. Research Progress of sRNA Regulates the Expression of Genes in Related with Bacterial Resistance[J]. China Biotechnology, 2018, 38(7): 89-93.
[14] Ying-ying ZHANG,Bin TANG,Guo-cheng DU. Study on the Intracellular Glycosyl Donor and Structural Function of Cellobiose Synthase from Rhizopus stolonifer[J]. China Biotechnology, 2018, 38(4): 38-45.
[15] Jia-ao GE,Chang LIU,Jian-gang GONG,Yan-qin LIU. Research Progress of Antibacterial Cyclopeptides[J]. China Biotechnology, 2018, 38(11): 76-83.