Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (1): 76-85    DOI: 10.13523/j.cb.20160111
    
Role of Endoplasmic Reticulum Stress in Diseases
CHEN Na-zi, JIANG Chao, LI Xiao-kun
Wenzhou Medical College, Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou 325035, China
Download: HTML   PDF(651KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Endoplasmic reticulum (ER) is the site of protein synthesis, protein folding, maintainance of calcium homeostasis, synthesis of lipids and sterols. Genetic or environmental insults can alter its function generating ER stress. During ERS, protein misfolding and accumulation in the ER lumen initiate unfolded protein response(UPR) through a series of signal transduction pathways that produce various effects, including enhancing the ability of proteins to fold properly, accelerating protein degradation, increasing the probability of cell survival, and strengthening the selfrepair ability of the ER. Either ERS persists or activated excessively, eventually initiates cell apoptosis. Therefore, ER stress and UPR are implicated in the development of various diseases. Recent studies have demonstrated that ER stress and UPR signaling are involved in cancer, inflammatory diseases, metabolic disorders, osteoporosis and neurodegenerative diseases. However, the precise knowledge regarding involvement of ER stress in different disease processes is still debatable. Here the possible role of ER stress in various disorders on the basis of existing literature is discussed.



Key wordsDiseases      Unfolded protein response (UPR)      Cell apoptosis      Endoplasmic reticulum(ER) stress     
Received: 17 August 2015      Published: 11 January 2016
ZTFLH:  Q343.315  
Cite this article:

CHEN Na-zi, JIANG Chao, LI Xiao-kun. Role of Endoplasmic Reticulum Stress in Diseases. China Biotechnology, 2016, 36(1): 76-85.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160111     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I1/76

[1] Paschen W, Frandsen A. Endoplasmic reticulum dysfunction a common denominator for cell injury in acute and degenerative diseases of the brain. J Neurochem, 2001, 79(4):719-725.
[2] Schroder M, Kaufman R J. ER stress and the unfolded protein response. Mutat Res, 2005, 569(1-2):29-63.
[3] Zhang H Y, Wang Z G, Lu X H, et al. Endoplasmic reticulum stress: relevance and therapeutics in central nervous system diseases. Mol Neurobiol, 2015, 51(3): 1343-1352.
[4] Stefan C J, Manford A G, Emr S D. ER-PM connections: sites of information transfer and inter-organelle communication. Curr Opin Cell Biol, 2013, 25(4): 434-442.
[5] Tavassoli S, Chao J T, Young B P, et al. Plasma membrane-endoplasmic reticulum contact sites regulate phosphatidylcholine synthesis. EMBO Rep, 2013, 14(5): 434-440.
[6] Breckenridge D G, Germain M, Mathai J P,et al. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene, 2003, 22(53):8608-8618.
[7] Volmer R, van der Ploeg K, Ron D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc Natl Acad Sci USA, 2013, 110(12):4628-4633.
[8] Hetz C, Chevet E, Harding H P. Targeting the unfolded protein response in disease. Nat Rev Drug Discov, 2013, 12(9):703-719.
[9] Szegezdi E, Logue S, Gorman A, et al. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep, 2006, 7(9): 880-885.
[10] Shen J, Chen X, Hendershot L, et al. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell, 2002, 3(1):99-111.
[11] Bertolotti A, Zhang Y, Hendershot L M, et al. Dynamic interaction of BiP and ER stress transducers in the unfoldedprotein response. Nat Cell Biol, 2000, 2:326-332.
[12] Jäger R, Bertrand M J, Gorman A M, etal. The unfolded protein response at the crossroads of cellular life and death during endoplasmic reticulum stress. Biol Cell, 2012, 104(5):259-270.
[13] Gorman A M, Healy S J, Jäger R, et al. Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol Ther, 2012, 134(3):306-316.
[14] Logue S E, Cleary P, Saveljeva S, et al. New directions in ER stress-induced cell death. Apoptosis, 2013, 18(5):537-546.
[15] Bravo R, Gutierrez T, Paredes F, et al. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics. Int J Biochem Cell Biol, 2012, 44(1): 16-20.
[16] Bravo R, Vicencio J M, Parra V, et al. Increased ER mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J Cell Sci, 2011, 124(13):2143-2152.
[17] Sánchez A M, Martínez-Botas J, Malagarie-Cazenave S, et al. Induction of the endoplasmic reticulum stress protein GADD153/CHOP by capsaicin in prostate PC-3 cells: a microarray study. Biochem Biophys Res Commun, 2008, 372(4):785-791.
[18] Zinszner H, Kuroda M, Wang X, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev, 1998, 12(7):982-995.
[19] Rizvi S H M, Parveen A, Verma A K, et al. Aluminium induced endoplasmic reticulum stress mediated cell death in SH-SY5Y neuroblastoma cell line is independent of p53. PLoS One, 2014, 9(5):e98409.
[20] Parveen A, Rizvi S H M, Mahdi F, et al. Silica nanoparticles mediated neuronal cell death in corpus striatum of rat brain: implication of mitochondrial, endoplasmic reticulum and oxidative stress. J Nanopart Res, 2014, 16:2664.
[21] McCullough K D, Martindale J L, Klotz L O, et al. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol, 2001, 21(4):1249-1259.
[22] Kim H, Tu H C, Ren D, et al. Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell, 2009, 36(3):487-499.
[23] Rodriguez D, Rojas-Rivera D, Hetz C. Integrating stress signals at the endoplasmic reticulum: the BCL-2 protein family rheostat. Biochim Biophys Acta, 2011, 1813(4):564-574.
[24] Novoa I, Zeng H, Harding H P, et al. Feedback inhibition of the unfolded protein response by GADD34- mediated dephosphorylation of eIF2a. J Cell Biol, 2001, 153(5):1011-1021.
[25] Brush M H, Weiser D C, Shenolikar S. Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1a to the endoplasmic reticulum and promotes dephosphorylation of the a subunit of eukaryotic translation initiation factor 2. Mol Cell Biol, 2003, 23(4):1292-1303.
[26] Kojima E, Takeuchi A, Haneda A, et al. The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34- deficient mice. FASEB J, 2003, 17(11):1573-1575.
[27] Yoneda T, Imaizumi K, Oono K, et al. Activation of Caspase- 12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem, 2001, 276(17):13935-13940.
[28] Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol, 2011, 13(3):184-190.
[29] Parveen A, Rizvi S H M, Gupta A, et al. NMR-based metabonomics study of sub-acute hepatotoxicity induced by silica nanoparticles in rats after intranasal exposure. Cell Mol (Noisy-le-Grand France), 2012, 58(1):196-203.
[30] Tripathi S, Mahdi A A, Nawab A, et al. Influence of age on aluminum induced lipid peroxidation and neurolipofuscin in frontal cortex of rat brain: abehavioral, biochemical and ultrastructural study. Brain Res, 2009, 1253(2):107-116.
[31] Tripathi S, Somashekar B S, Mahdi A A, et al. Aluminum-mediated metabolic changes in rat serum and urine: a proton nuclear magnetic resonance study. J Biochem Mol Toxicol, 2008, 22(2):119-127.
[32] Gorlach A, Klappa P, Kietzmann T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal, 2006, 8(9-10):1391-1418.
[33] Tu B P, Weissman J S. Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol, 2004, 164(3):341-346.
[34] Sevier C S, Kaiser C A. Ero1 and redox homeostasis in the endoplasmic reticulum. Biochim Biophys Acta, 2008, 1783(4): 549-556.
[35] Malhotra J D, Kaufman R J. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword. Antioxid Redox Signal, 2007, 9(12):2277-2293.
[36] Cioffi D L. Redox regulation of endothelial canonical transient receptor potential channels. Antioxid Redox Signal, 2011, 15(6): 1567-1582.
[37] Santos C X, Tanaka L Y, Wosniak J, et al. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial eletron transport, and NADPH oxidase. Antioxid Redox Signal, 2009, 11(10):2409-2427.
[38] Harding H P, Zhang Y, Zeng H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell, 2003, 2003(11): 619-633.
[39] Rizvi F, Shukla S, Kakkar P. Essential role of PH domain and leucine-rich repeat protein phosphatase 2 in Nrf2 suppression via modulation of Akt/GSK3b/Fyn kinase axis during oxidative hepatocellular toxicity. Cell Death Dis, 2014, 27(5):e1153.
[40] Chevillard G, Blank V. NFE2L3 (NRF3): the Cinderella of the Cap'n'Collar transcription factors. Cell Mol Life Sci, 2011, 68(20): 3337-3348.
[41] Zhang Y, Hayes J D. Identification of topological determinants in the N-terminal domain of transcription factor Nrf1 that control its orientation in the endoplasmic reticulum membrane. Biochem J, 2010, 430(3):497-510.
[42] Cullinan S B, Diehl J A. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem, 2004, 279(19):20108-20117.
[43] Cullinan S B, Zhang D, Hannink M, et al. Nrf2 is a direct PERK substrate and effector of PERK dependent cell survival. Mol Cell Biol, 2003, 23(20): 7198-7209.
[44] Garg A D, Kaczmarek A, Krysko O, et al. ER stress induced inflammation: does it aid or impede disease progression. Trends Mol Med, 2012, 10(10):589-598.
[45] Chaudhari N, Talwar P, Parimisetty A, et al. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci, 2014, 29(8):213.
[46] Lin J H, Walter P, Yen T S B. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol, 2008, 3(5):399-425.
[47] Hotamisligil G S. Role of endoplasmic reticulum stress and c- Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes. Diabetes, 2005, 54(Suppl 2):S73-S78.
[48] Verfaillie T, Garg A D, Agostinis P. Targeting ER stress induced apoptosis and inflammation in cancer. Cancer Lett, 2010, 332(2): 249-264.
[49] Hotamisligil G S, Erbay E. Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol, 2008, 8(12):923-934.
[50] Zhang K, Kaufman R J. From endoplasmic-reticulumstress to the inflammatory response. Nature, 2008, 454(7):455-462.
[51] Rius J, Guma M, Schachtrup C, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature, 2008, 453(7196):807-811.
[52] Angel P, Szabowski A, Schorpp-Kistner M. Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene, 2001, 20(19):2413-2423.
[53] Vandanmagsar B, Youm Y H , Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med, 2011, 17:179-188.
[54] Horng T, Hotamisligil G S. Linking the inflammasome to obesity- related disease. Nat Med, 2011, 17(2):164-165.
[55] Shenderov K, Riteau N, Yip R, et al. Cutting edge:endoplasmic reticulum stress liceses macrophages to produce mature IL-1beta in response toTLR4stimulation through a caspase-8- and TRIF-dependent pathway. J Immunol, 2014, 192(2):2029-2033.
[56] Oslowski C M, Hara T, O'sullivan-Murphy B, et al. Thioredoxin-interacting protein mediates ERstress-induced beta cell death through initiation of the inflammasome. Cell Metab, 2012, 16(2):265-273.
[57] Zhang P, McGrath B, Li S, et al. The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol, 2002, 22(11):3864-3874.
[58] Harding H P, Zeng H, Zhang Y, et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival. Mol Cell, 2001, 7(6):1153-1163.
[59] Goltzman D. Discoveries, drugs and skeletal disorders. Drug Discov, 2002, 1(10):784-796.
[60] Boyle W J, Simonet W S, Lacey D L. Osteoclast differentiation and activation. Nature, 2003, 423(6937):337-342.
[61] He L, Lee J, Jang J H, et al. Osteoporosis regulation by salubrinal through eIF2a mediated differentiation of osteoclast and osteoblast. Cell Signal, 2013, 25(2):552-560.
[62] Norris R, Parker M. Diabetes mellitus and hip fracture: a study of 5966 cases. Injury, 2011, 42(11):1313-1316.
[63] Follak N, Kloting I, Merk H. Influence of diabetic metabolic state on fracture healing in spontaneously diabetic rats. Diabetes Metab Res Rev, 2005, 21(3):288-296.
[64] Liu W, Zhu X, Wang Q, et al. Hyperglycemia induces endoplasmic reticulum stress-dependent CHOP expression in osteoblasts. Exp Ther Med, 2013, 5(5):1289-1292.
[65] Tohmonda T, Chiba K, Toyama Y, et al. Unfolded protein response mediator, the IRE1a-XBP1 pathway is involved in osteoblast differentiation. Arthritis Res Ther, 2012, 14(Suppl 1):70.
[66] Hino S, Kondo S, Yoshinaga K, et al. Regulation of ER molecular chaperone prevents bone loss in a murine model for osteoporosis. J Bone Miner Metab, 2010, 28(2):131-138.
[67] Schonthal A H. Pharmacological targeting of endoplasmic reticulum stress signaling in cancer. Biochem Pharmacol, 2013, 85(5):653-666.
[68] Wang S, Kaufman R J. The impact of the unfolded protein response on human disease. J Cell Biol, 2012, 197(7):857-867.
[69] Fernandez P M, Tabbara S O, Jacobs L K, et al. Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions. Breast Cancer Res Treat, 2000, 59(1):15-26.
[70] Lee A S. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res, 2007, 67(8):3496-3499.
[71] Li J, Lee A S. Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med, 2006, 6(10):45-54.
[72] Uramoto H, Sugio K, Oyama T, et al. Expression of endoplasmic reticulum molecular chaperone Grp78 in human lung cancer and its clinical significance. Lung Cancer, 2005, 49(1):55-62.
[73] Wang Q, He Z, Zhang J, et al. Over expression of endoplasmic reticulum molecular chaperone GRP94 and GRP78 in human lung cancer tissues and its significance. Cancer Detect Prev, 2005, 29(6):544-551.
[74] Wang X P, Qiu F R, Liu G Z, et al. Correlation between clinicopathology and expression of heat shock protein 70 and glucose-regulated protein 94 in human colonic adenocarcinoma. World J Gastroenterol, 2005, 11(7):1056-1059.
[75] Zheng H C, Takahashi H, Li X H, et al. Overexpression of GRP78 and GRP94 are markers for aggressive behavior and poor prognosis in gastric carcinomas. Hum Pathol, 2008, 39(7):1042-1049.
[76] Dong D, Ni M, Li J, et al. Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development. Cancer Res, 2008, 68(1):498-505.
[77] Jamora C, Dennert G, Lee A S. Inhibition of tumor progression by suppression of stress protein GRP78/BiP induction in fibrosarcoma B/C10ME. Proc Natl Acad Sci USA, 1996, 93(15): 7690-7694.
[78] Fels D R, Koumenis C. The perk/eif2alpha/atf4 module of the upr in hypoxia resistance and tumor growth. Cancer Biol Ther, 2006, 5(7):723-728.
[79] Bobrovnikova-Marjon E, Grigoriadou C, Pytel D, et al. Perk promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene, 2010, 29(27):3881-3895.
[80] Healy S J, Gorman A M, Mousavi-Shafaei P,et al. Targeting the endoplasmic reticulum-stress response as an anticancer strategy. Eur J Pharmacol, 2009, 625(1-3):234-246.
[81] Pluquet O, Hainaut P. Genotoxic and non-genotoxic pathways of p53 induction. Cancer Lett, 2001, 174(1):1-15.
[82] Madan E, Gogna R, Bhatt M, et al. Regulation of glucose metabolism by p53: emerging new roles for the tumor suppressor. Oncotarget, 2011, 2(12):948-957.
[83] Madan E, Gogna R, Kuppusamy P, et al. SCO2 induces p53-mediated apoptosis by Thr845 phosphorylation of ASK-1 and dissociation of the ASK-1-Trxcomplex. Mol Cell Biol, 2013, 33(7):1285-1302.
[84] Madan E, Gogna R, Kuppusamy P, et al. TIGAR induces p53-mediated cell-cycle arrest by regulation of RB-E2F1 complex. Br J Cancer, 2012, 107(3):516-526.
[85] Qu L, Huang S, Baltzis D, et al. Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3b. Genes Dev, 2004, 18(3):261-277.
[86] Elena S, Elena S, Halazonetis T D. p53 and stress in the ER. Genes Dev, 2004, 18:241-244.
[87] Tabira T, Chui D H, Kuroda S. Significance of the intracellular Ab42 accumulation in Alzheimer's disease. Front Biosci, 2002, 7(4):44-49.
[88] Baba M, Nakajo S, Tu P H, et al. Aggregation of a-synuclein in lewy bodies of sporadic Parkinson's disease and dementia with lewy bodies. Am J Pathol, 1998, 152(4):879-884.
[89] Anand R, Gill K D, Mahdi A A. Therapeutics of Alzheimer's disease: past, present and future. Neuropharmacology, 2014, 76(PtA): 27-50.
[90] Cook D G, Sung J C, Golde T E, et al. Expression and analysis of presenilin 1 in a human neuronal system: localization in cell bodies and dendrites. Proc Natl Acad Sci USA, 1996, 93(17):9223-9228.
[91] Katayama T, Imaizumi K, Honda A, et al. Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer's disease-linked presenilin-1 mutations. J Biol Chem, 2001, 276(46):43446-43454.
[92] Hoozemans J J M, van Haastert E S, Nijholt D A T, et al. The unfolded protein response is activated in pretangle neurons in Alzheimer's disease hippocampus. Am J Pathol, 2009, 174(4):1241-1251.
[93] Unterberger U, Hoftberger R, Gelpi E, et al. Endoplasmic reticulum stress features are prominent in Alzheimer's disease but not in prion diseases in vivo. J Neuropathol Exp Neurol, 2006, 65(4):348-357.
[94] Gupta S D A, Deepti A, Deegan S, et al. HSP72 protects cells from ER stress induced apoptosis via enhancement of IRE1a-XBP1 signaling through a physical interaction. PLoS Biol, 2010, 8:e1000410.
[95] Acosta-Alvear D, Zhou Y, Blais A, et al. XBP1 controls diverse cell type- and conditionspecific transcriptional regulatory networks. Mol Cell, 2007, 27(1):53-66.
[96] Coleman P D, Yao P J. Synaptic slaughter in Alzheimer's disease. Neurobiol Aging, 2003, 24(8):1023-1027.
[97] Marwarha G, Raza S, Prasanthi J R P, et al. Gadd153 and NF-κB crosstalk regulates 27-hydroxycholesterol-induced increase in BACE1 and b-amyloid production in human neuroblastoma SH-SY5Y cells. PLoS One, 2013, 8:e70773.
[98] Paula-Lima A C, Adasme T, SanMartin C, et al. Amyloid b-peptide oligomers stimulate RyR-mediated Ca2+ release inducing mitochondrial fragmentation in hippocampal neurons and prevent RyR-mediated dendritic spine remodeling produced by BDNF. Antioxid Redox Signal, 2011, 14(7):1209-1223.
[99] Querfurth H W, Selkoe D J. Calcium ionophore increases amyloid- beta peptide production by cultured cells. Biochemistry, 1994, 33(15):4550-4561.
[100] Green K N, LaFerla F M. Linking calcium to A beta and Alzheimer's disease. Neuron, 2008, 59(2):190-194.
[101] Ferreiro E, Pereira C M F. Endoplasmic reticulumstress: a new play ER in tauopathies. J Pathol, 2012, 226(5):687-692.
[102] Hoozemans J J, Scheper W. Endoplasmic reticulum: the unfolded protein response is tangled in neurodegeneration. Int J Biochem Cell Biol, 2012, 44(8):1295-1298.
[103] Ballatore C, Lee V M, Trojanowski J Q. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci, 2007, 8(9):663-672.
[104] Cláudia M F. Pereira Crosstalk between endoplasmic reticulum stress and protein misfolding in neurodegenerative diseases. ISRN Cell Biol, 2013, Open Access Overview. . http://scholar.google.com/scholar?cluster=6987874543115927542&hl=zh-CN&as_sdt=0,5
[105] Healy D G, Abou-Sleiman P M, Wood N W. PINK, PANK, or PARK? A clinicians' guide to familial parkinsonism. Lancet Neurol, 2004, 3(11):652-662.
[106] Mercado G, Valdes P, Hetz C. An ERcentric view of Parkinson's disease. Trends Mol Med, 2013, 19(3):165-175.
[107] Zhou J X, Zhang H B, Huang Y, et al. Tenuigenin attenuates alphasynuclein- induced cytotoxicity by down-regulating polo-like kinase 3. CNS Neurosci Ther, 2013, 19(9):688-694.
[108] Sado M, Yamasaki Y, Iwanaga T, et al. Protective effect against Parkinson's disease-related insults through the activation of xbp1. Brain Res, 2009, 1257(2):16-24.
[109] Egawa N, Yamamoto K, Inoue H, et al. The endoplasmic reticulum stress sensor, atf6α protects against neurotoxin-induced dopaminergic neuronal death. J Biol Chem, 2010, 286(10):7947-7957.
[110] Brundin P, Li J Y, Holton J L, et al. Research in motion: the enigma of Parkinson's disease pathology spread. Nat Rev Neurosci, 2008, 9(10):741-755.
[111] Smith W W, Jiang H, Pei Z, et al. Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Hum Mol Genet, 2005, 14(24):3801-3811.
[112] Tong Y, Yamaguchi H, Giaime E, et al. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of a-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci USA, 2010,107(21):9879-9884.
[113] Vitte J, Traver S, Maués De Paula A M, et al. Leucine-rich repeat kinase 2 is associated with the endoplasmic reticulum in dopaminergic neurons and accumulates in the core of Lewy bodies in Parkinson disease. J Neuropathol Exp Neurol, 2010, 69(9):959-972.
[114] Yuan Y, Cao P, Smith M A, et al. Dysregulated LRRK2 signaling in response to endoplasmic reticulum stress leads to dopaminergic neuron degeneration in C. elegans. PLoS One, 2011, 6(8):e22354.
[115] Murakami T, Shoji M, Imai Y, et al. Pael-R is accumulated in Lewy bodies of Parkinson's disease. Ann Neurol, 2004, 55(3):439-442.
[116] Imai Y, Soda M, Inoue H, et al. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell, 2001, 105(7):891-902.
[117] Imai Y, Soda M, Takahashi R. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitinprotein ligase activity. J Biol Chem, 2000, 275(46):35661-35664.
[118] Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 1998, 392(6676):605-608.
[119] Mizuno Y, Hattori N, Matsumine H. Neurochemical and neurogenetic correlates of Parkinson's disease. J Neurochem, 1998, 1998(71):893-902.
[120] Omura T, Kaneko M, Okuma Y, et al. Endoplasmic reticulum stress and Parkinson's disease: the role of HRD1 in averting apoptosis in neurodegenerative disease. Oxid Med Cell Longev, 2013, Open Access Overview. . http://www.hindawi.com/journals/omcl/2013/239854/.

[1] TAN Pei-lin,ZHANG Ying,ZHANG Jun,GAO Xiao,WANG Shu-kun,HOU Lin,YUAN Zeng-qiang. Role and Mechanism of Metformin in Oligodendrocyte Precursor Cell Differentiation[J]. China Biotechnology, 2021, 41(9): 1-9.
[2] ZHU Jia-hao,CHEN Ting,XI Qian-yun. Research Progress on miR-146a Involved in Different Diseases[J]. China Biotechnology, 2021, 41(9): 64-70.
[3] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[4] YUAN Bo,WANG Jie-wen,KANG Guang-bo,HUANG He. Research Progress and Application of Bispecific Nanobody[J]. China Biotechnology, 2021, 41(2/3): 78-88.
[5] ZHANG Ying,KONG Xiang-xi,HOU Lin,WANG Shu-kun,YUAN Zeng-qiang. Role and Mechanism of Ozanimod (RPC1063) in Oligodendrocyte Precursor Cell Differentiation[J]. China Biotechnology, 2020, 40(6): 10-19.
[6] MEI Ya-xian,WANG Yue,LUO Wen-xin. Application of Nano-antibody in the Prevention, Diagnosis and Treatment of Infectious Diseases[J]. China Biotechnology, 2020, 40(10): 24-34.
[7] DAO Feng-ting,YANG Lu,WANG Ya-zhe,CHANG Yan,YUAN Xiao-ying,LI Ling-di,CHEN Wen-min,LONG Ling-yu,LIU Yan-rong,QIN Ya-zhen. Characteristics and Prognostic Significance of Ki-67 Expression at diagnosis in Adult t(8;21) Acute Myeloid Leukemia[J]. China Biotechnology, 2019, 39(9): 11-18.
[8] Ran XU,Song CHEN. Research Progress of CRISPR/Cas9 Delivery System and Its Application in Gene-related Diseases[J]. China Biotechnology, 2018, 38(3): 81-88.
[9] Jia-ao GE,Chang LIU,Jian-gang GONG,Yan-qin LIU. Research Progress of Antibacterial Cyclopeptides[J]. China Biotechnology, 2018, 38(11): 76-83.
[10] LI Li-li, WEI Qi-yan, WANG Yan-fang, HE Zhong-mei, GAO Yu-gang, MA Ji-sheng. Research Progress of FGF/FGFR Signaling Regulating Osteoblast Differentiation[J]. China Biotechnology, 2017, 37(6): 107-113.
[11] BAI Xin-yan, WEN Li-min, WANG Yu-jing, WANG Hai-long, XIE Jun, GUO Rui. ANKRD49 Inhibits UV-induced Apoptosis of GC-1 Cells by Up-regulating Bcl-xL[J]. China Biotechnology, 2017, 37(4): 40-47.
[12] YANG Yu, LIU Ya, GU Lan, ZHAO Ting-ting, REN Lu-feng. The Current Situation and the Development Trend of Automatic Nucleic Acid Molecular Diagnostic System[J]. China Biotechnology, 2017, 37(3): 115-123.
[13] REN Hua-jing, LIU Xiao-zhi, WANG Zhi-ming, GAO Jian. Progression of Central Nervous System Disease Therapeutic Antibody Drug Application[J]. China Biotechnology, 2016, 36(9): 54-58.
[14] HU Li-li, ZHUO Kan, LIN Bo-rong, LIAO Jin-ling. The Research Progress of Methods on Function Analysis of Effectors from Plant-parasitic Nematode[J]. China Biotechnology, 2016, 36(2): 101-108.
[15] ZHAO Yang, TIAN Hai-shan, LI Xiao-kun, JIANG Chao . The Research Progress of Fibroblast Growth Factor 20[J]. China Biotechnology, 2015, 35(8): 103-108.