Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (12): 51-58    DOI: 10.13523/j.cb.20141208
    
Effects of Nitrogen Concentration on the Growth and Photosynthetic Physiology of Scenedesmus acuminatus
WANG Ya-jun, SUN Ming-zhe, LI Ai-fen, ZHANG Cheng-wu
Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
Download: HTML   PDF(1053KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Scenedesmus acuminatus, a new isolated freshwater green microalga, could be potentially used as feedstock for biodiesel production. The effects of nitrate concentration (3.6 mmol/L, 6 mmol/L, 9 mmol/L, and 18 mmol/L) on the growth and photosynthetic physiology of the algae was investigated with column photobioreactors. The results showed that nitrogen concentration exerted considerable influence on the growth of S. acuminatus, and the maximum biomass of 5.19 g/L was obtained under 6 mmol/L nitrate experimental group. The content of chlorophyll a, b, and total carotenoids of S. acuminatus were positively correlated with nitrogen concentration. The total lipid content of S. acuminatus increased remarkable during the whole culture period, and achieved its peak value of 54% of dry weight, which was 17% higher than that obtained under high nitrogen concentration (18 mmol/L). Meanwhile, the total carbohydrate and protein contents decreased significantly during the whole culture period. The maximum efficiency of light energy conversion of PSⅡ(Fv/Fm), relative electron transfer efficiency (ETR), and the actual energy conversion efficiency(Yield) decreased significantly as the nitrogen supply decreased. The photosynthetic oxygen release rate decreased, with a contrary increase of respiratory rate during the whole culture period. In conclusion, the growth and photosynthetic physiology of S. acuminatus were evidently influenced by the nitrogen concentration, and adjusted to their changing environment.



Key wordsScenedesmus acuminatus      Growth      Chlorophyll fluorescence parameters      Biochemical composition      Nitrogen     
Received: 16 September 2014      Published: 25 December 2014
ZTFLH:  Q945  
Cite this article:

WANG Ya-jun, SUN Ming-zhe, LI Ai-fen, ZHANG Cheng-wu. Effects of Nitrogen Concentration on the Growth and Photosynthetic Physiology of Scenedesmus acuminatus. China Biotechnology, 2014, 34(12): 51-58.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20141208     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I12/51


[1] 于洁. 国际生物能源发展的情报学研究. 上海:中国科学院研究生院 (上海生命科学研究院), 2007. Yu Jie. Informatics study on international development of bioenergy.Shanghai:University of Chinese Academy of Sciences,2007.

[2] Tüccar G, Özgür T, Aydn K. Effect of diesel-microalgae biodiesel-butanol blends on performance and emissions of diesel engine. Fuel, 2014, 132: 47-52.

[3] 张敬键, 吕雪娟, 李爱芬, 等. 微藻细胞油脂含量的快速检测方法. 中国生物工程杂志, 2012, 32(1): 64-72. Zhang J J,Lv X J,Li A F, et al.Rapid estimation of lipids in microalgae cells.China Biotechnology,2012, 32(1): 64-72.

[4] Jiang Y, Yoshida T, Quigg A. Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae. Plant Physiology and Biochemistry, 2012, 54: 70-77.

[5] Heldt H W, Piechulla B. Plant Biochemistry. Beijing:Academic Press, 2010.

[6] Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 2008, 54(4): 621-639.

[7] Cakmak T, Angun P, Demiray Y E, et al. Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnology and Bioengineering, 2012, 109(8): 1947-1957.

[8] Wei L, Derrin B, Gautier A, et al. Nitric oxide-triggered remodeling of chloroplast bioenergetics and thylakoid proteins upon Nitrogen Starvation in Chlamydomonas reinhardtii. Plant Cell, 2014, (1):353-372.

[9] Pasquini S C, Santiago L S. Nutrients limit photosynthesis in seedlings of a lowland tropical forest tree species. Oecologia, 2012, 168(2): 311-319.

[10] Geider R J, Roche J, Greene R M, et al. Response of the photosynthetic apparatus of phaeodactylum tricornutum (Bacillariophyceae) to nitrate, phosphate, or iron starvation1. Journal of Phycology, 1993, 29(6): 755-766.

[11] Adams C, Godfrey V, Wahlen B, et al. Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae. Bioresource Technology, 2013, 131: 188-194.

[12] Berges J A, Falkowski P G. Physiological stress and cell death in marine phytoplankton: Induction of proteases in response to nitrogen or light limitation. Limnol Oceanogr, 1998, 43(1): 129-135.

[13] Pirastru L, Darwish M, Chu F L, et al. Carotenoid production and change of photosynthetic functions in S. acuminatus exposed to nitrogen limitation and acetate treatment. Journal of Applied Phycology, 2012, 24(1): 117-124.

[14] 胡晗华,石岩峻,丛威,等. 不同氮磷水平下中肋骨条藻对营养盐的吸收及光合特性. 应用与环境生物学报,2004, 10 (6): 735-739. Hu H H, Shi Y J, Cong W, et al. Photosynthetic characteristics and nutrient absorptin of Skeletonema costatum at different nitrogen and phosphorus levels. Chin J Appl Envi ron Biol, 2004, 10 (6): 735-739.

[15] 梁英,金月梅,田传远. 氮磷浓度对绿色巴夫藻生长及叶绿素荧光参数的影响. 海洋湖沼通报,2008, 1: 120-128. Liang Y, Jing Y M, Tian C Y. Effects of different nitrogen and phosphorus concentrations on the growth and chlorophyll fluorescence parameters of Pavloca viridis. Transactions of Oceanology and Limnology, 2008, 1: 120-128.

[16] Recht L, Zarka A, Boussiba S. Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Applied Microbiology and Biotechnology, 2012, 94(6): 1495-1503.

[17] 高保燕, 沈丹丹, 何思思, 等. 富油微藻———尖状栅藻生物质生产与奶牛场废水处理相结合的效果研究. 可再生能源,2014,05:673-679. Gao B Y,Shen D D,He S S,et al. Integrated the biomass production of oleaginous microalga Scenedesmus acuminatus and dairy wastewater treatment.Renewable Energy Resources,2014,05:673-679.

[18] Khozin-Goldberg I, Shrestha P, Cohen Z. Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2005, 1738(1): 63-71.

[19] Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956, 28(3): 350-356.

[20] Jensen A. Chlorophylls and Carotenoids. Handbook of phycological methods. Cambridge:Cambridge University Press, 1978. 59-70.

[21] 梁英, 冯力霞, 田传远, 等. 高温胁迫对盐藻和塔胞藻叶绿素荧光动力学的影响. 中国水产科学, 2008 (6): 961-968. Liang Y, Feng L X, Tian C Y, et al. Effects of high temperature stress on chlorophyll fluorescence kinetics of Dunaliella salina and Pyramimonas sp. Journal of Fishery Sciences of China, 2007, 14(6): 961-968.

[22] 王璐瑶, 桑敏, 李爱芬, 等. 不同缺氮营养水平对金色奥杜藻生长及光合生理的影响. 中国生物工程杂志, 2012, 32(6): 48-56. Wang L Y,Sang M,Li A F,et al. Effects of different nitrogen nutrition level on the growth and photosynthetic physiology of Odontella aurita.China Biotechnology, 2012, 32(6): 48-56.

[23] 王元丽, 李其雨, 李爱芬, 等. 4 株真眼点藻的生长及光合生理特性. 中国生物工程杂志, 2014, 34(2): 91-95. Wang Y L,Li Q Y,Li A F,et al.Growth and photosynthetic physiological characteristics of four Eustigmatophycean species.China Biotechnology,2014, 34(2): 91-95.

[24] Liu J L,Wang J F,Liu T Z,et al.The effects of nitrogen starvation on lipid accumulation andphotosynthesis of Scenedesmus dimorphus.Marine Sciences, 2013, 37(7): 13.

[25] Ördög V, Stirk W A, Bálint P, et al. Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella minutissima cultures. Journal of Applied Phycology, 2012, 24(4): 907-914.

[26] Dean A P, Sigee D C, Estrada B, et al. Using FTIR spectroscopy for rapid determination of lipidaccumulation in response to nitrogen limitation in freshwater microalgae. Bioresource Technology, 2010, 101(12): 4499-4507.

[27] Siaut M, Cuiné S, Cagnon C, et al. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnology, 2011, 11(1): 7.

[1] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.
[2] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[3] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[4] MENG Xiao-lin,PANG Xi-ming,WANG Jie. Agrobacterium-mediated Transformation and the Functions of Pks in Marine-derived Penicillium oxalicum[J]. China Biotechnology, 2020, 40(9): 11-17.
[5] YANG Dan,TIAN Hai-shan,LI Xiao-kun. Research Progress of Fibroblast Growth Factor 5[J]. China Biotechnology, 2020, 40(3): 117-124.
[6] Yi SONG,Cui-yun ZHANG,Yi LI,Su-su ZHANG,Shun PAN,Yun-yun TAO,Lu-yao XU,Hua-cheng HE,Jiang WU. Preparation of a Novel Surgical Sewing Thread with Control Release of Basic Fibroblast Growth Factor Through Electrospinning Technology[J]. China Biotechnology, 2019, 39(1): 55-62.
[7] Pei-yi LI,Yu-cong ZHOU,Ya-qian LI,Jie CHEN. Study on Functional Properties of Carbon Catabolite Repressor CRE1 in Trichoderma atroviride[J]. China Biotechnology, 2018, 38(6): 17-25.
[8] Xin GAO,Pan-jian WEI,Zhuo-hong YAN,Ling YI,Xiao-jue WANG,Bin YANG,Hong-tao ZHANG. Cloning and Expression of Single Chain Antibody Against Human EGFR[J]. China Biotechnology, 2018, 38(5): 73-78.
[9] Si-teng DUAN,Guang-ran LI,Yi-yong MA,Yu-jia QIU,Yu LI,Wei WANG. Study on Physicochemical Properties and Biocompatibility of Injectable Chitosan-hyaluronic Acid Hydrogel Loaded with NGF[J]. China Biotechnology, 2018, 38(4): 70-77.
[10] Ya-nan LIU,Li LU,Xue-xi WANG,Yong-jie WU,Xia LIU. Research Pogress of Adipose Derived Stem Cells on Nerve Injury Repair[J]. China Biotechnology, 2018, 38(3): 70-75.
[11] XU An-jian, LI Yan-meng, LI Si-wen, WU Shan-na, ZHANG Bei, HUANG Jian. The Effect of PHP14 Knockdown on Lung Cancer Cells Apoptosis and Its Mechanism[J]. China Biotechnology, 2017, 37(7): 12-17.
[12] ZHOU Lin, WANG Liang, GAO Juan, ZHAO Quan-yu, WEI Wei, SUN Yu-han. Transcriptomic Analysis of Response to Phenol of Evolved and Unevolved Chlorella Strains[J]. China Biotechnology, 2017, 37(7): 72-79.
[13] ZHENG Jie, JIANG Chao, LI Xiao-kun, TIAN Hai-shan. The Progression of Fibroblast Growth Factor 6[J]. China Biotechnology, 2017, 37(4): 110-114.
[14] CHEN Kun, CAO Xue-wei, ZHANG Qin, ZHAO Jian, WANG Fu-jun. Application of EGF-like Growth Factor-derived Tumor-homing Peptide for Antineoplastic Protein[J]. China Biotechnology, 2017, 37(3): 1-9.
[15] SUN Jian-feng, WANG Jian-xin. An Analysis Tool Based on E-index Method for Differentiating Complex Traits[J]. China Biotechnology, 2017, 37(2): 93-100.