Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (3): 70-75    DOI: 10.13523/j.cb.20180309
Orginal Article     
Research Pogress of Adipose Derived Stem Cells on Nerve Injury Repair
Ya-nan LIU1,Li LU1*(),Xue-xi WANG2,Yong-jie WU1,Xia LIU2
1 Department of Pharmacology,School of Medicine, Lanzhou University, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou 730000, China
2 Institute of Integrative Traditional and Western Medicine,School of Medicine, Lanzhou University, Lanzhou 730000, China
Download: HTML   PDF(450KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In medicine, the ability of the nervous system to repair nerve damage is often limited. In recent years, it has been found that adipose derived stem cells (ADSCs) have repair effects on various types of nerve injury and can be the seed cells for nerve injury repair. Not only being as stem cells, ADSCs also have some exclusive advantages. ADSCs belong to adult cells, which derived from the mesoderm, with multi-lineage differentiation potential, low immunogenicity, easy to gain, low risk after transplantation, thus make them become excellent immunogenicity, easy to gain, low risk after transplantation, thus make them become excellent seed cells for the nerve repair.The characteristics of adipose derived stem cells and their research progress and existing problems on nerve injury repair were reviewed.



Key wordsAdipose-derived stem cells      Growth factor      Nerve injury repair     
Received: 17 August 2017      Published: 04 April 2018
ZTFLH:  Q813  
Cite this article:

Ya-nan LIU,Li LU,Xue-xi WANG,Yong-jie WU,Xia LIU. Research Pogress of Adipose Derived Stem Cells on Nerve Injury Repair. China Biotechnology, 2018, 38(3): 70-75.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180309     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I3/70

[1]   Zuk P A, Zhu M, Mizuno H, et al.Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 2001, 7(2): 211-228.
doi: 10.1089/107632701300062859
[2]   Prockop D J.Stem cell research has only just begun. Science, 2001, 293(5528): 211-212.
[3]   Rozila I, Azari P, Munirah S, et al.Differential osteogenic potential of human adipose‐derived stem cells co‐cultured with human osteoblasts on polymeric microfiber scaffolds. Journal of Biomedical Materials Research Part A, 2016, 104(2): 377-387.
doi: 10.1002/jbm.a.35573 pmid: 26414782
[4]   Zhao Y, Jiang H, Liu X, et al.Neurogenic differentiation from adipose-derived stem cells and application for autologous transplantation in spinal cord injury. Cell and Tissue Banking, 2015, 16(3): 335-342.
doi: 10.1007/s10561-014-9476-3 pmid: 25636737
[5]   Alipour F, Parham A, Mehrjerdi H K, et al. Equine adipose-derived mesenchymal stem cells: phenotype and growth characteristics, gene expression profile and differentiation potentials. Cell J (Yakhteh), 2015, 16(4):456-465.
doi: 10.22074%2Fcellj.2015.491 pmid: 4297484
[6]   Faroni A, Terenghi G, Reid A J.Adipose-derived stem cells and nerve regeneration: promises and pitfalls. Int Rev Neurobiol, 2013, 108(1): 121-136.
doi: 10.1016/B978-0-12-410499-0.00005-8
[7]   Summa P G, Kalbermatten D F, Raffoul W, et al.Extracellular matrix molecules enhance the neurotrophic effect of Schwann cell-like differentiated adipose-derived stem cells and increase cell survival under stress conditions. Tissue Engineering Part A, 2012, 19(3-4): 368-379.
doi: 10.1089/ten.tea.2012.0124 pmid: 22897220
[8]   Han I H, Sun F, Choi Y J, et al.Cultures of Schwann-like cells differentiated from adipose‐derived stem cells on PDMS/MWNT sheets as a scaffold for peripheral nerve regeneration. Journal of Biomedical Materials Research Part A, 2015, 103(11): 3642-3648.
doi: 10.1002/jbm.a.35488 pmid: 25903927
[9]   Salzer J L.Schwann cell myelination. Cold Spring Harbor Perspectives in Biology, 2015, 7(8): a020529.
doi: 10.1101/cshperspect.a020529
[10]   Grove M, Brophy P J.FAK is required for Schwann cell spreading on immature basal lamina to coordinate the radial sorting of peripheral axons with myelination. Journal of Neuroscience, 2014, 34(40): 13422-13434.
doi: 10.1523/JNEUROSCI.1764-14.2014 pmid: 25274820
[11]   Glenn T D, Talbot W S.Signals regulating myelination in peripheral nerves and the Schwann cell response to injury. Current Opinion in Neurobiology, 2013, 23(6): 1041-1048.
doi: 10.1016/j.conb.2013.06.010 pmid: 3830599
[12]   Susuki K, Raphael A R, Ogawa Y, et al.Schwann cell spectrins modulate peripheral nerve myelination. Proceedings of the National Academy of Sciences, 2011, 108(19): 8009-8014.
doi: 10.1073/pnas.1019600108 pmid: 21518878
[13]   Zack-Williams S D L, Butler P E, Kalaskar D M. Current progress in use of adipose derived stem cells in peripheral nerve regeneration. World Journal of Stem Cells, 2015, 7(1): 51.
doi: 10.4252/wjsc.v7.i1.51 pmid: 25621105
[14]   Marconi S, Castiglione G, Turano E, et al.Human adipose-derived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush. Tissue Engineering Part A, 2012, 18(11-12): 1264-1272.
doi: 10.1089/ten.TEA.2011.0491 pmid: 22332955
[15]   Carriel V, Garrido-Gómez J, Hernández-Cortés P, et al.Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration. Journal of Neural Engineering, 2013, 10(2): 026022.
doi: 10.1088/1741-2560/10/2/026022 pmid: 23528562
[16]   Suganuma S, Tada K, Hayashi K, et al.Uncultured adipose-derived regenerative cells promote peripheral nerve regeneration. Journal of Orthopaedic Science, 2013, 18(1): 145-151.
doi: 10.1007/s00776-012-0306-9 pmid: 22948962
[17]   Orbay H, Uysal A C, Hyakusoku H, et al.Differentiated and undifferentiated adipose-derived stem cells improve function in rats with peripheral nerve gaps. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2012, 65(5): 657-664.
doi: 10.1016/j.bjps.2011.11.035 pmid: 22137687
[18]   Reid A J, Sun M, Wiberg M, et al.Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience, 2011, 199(10): 515-522.
doi: 10.1016/j.neuroscience.2011.09.064 pmid: 22020320
[19]   Xu Y, Zhang Z, Chen X, et al.A silk fibroin/collagen nerve scaffold seeded with a co-culture of Schwann cells and adipose-derived stem cells for sciatic nerve regeneration. PLoS One, 2016, 11(1): e0147184.
doi: 10.1371/journal.pone.0147184 pmid: 4723261
[20]   Kim D Y, Choi Y S, Kim S E, et al.In vivo effects of adipose-derived stem cells in inducing neuronal regeneration in Sprague-Dawley rats undergoing nerve defect bridged with polycaprolactone nanotubes. Journal of Korean Medical Science, 2014, 29(Suppl 3): S183-S192.
doi: 10.3346/jkms.2014.29.S3.S183 pmid: 4248004
[21]   Hsueh Y Y, Chang Y J, Huang T C, et al.Functional recoveries of sciatic nerve regeneration by combining chitosan-coated conduit and neurosphere cells induced from adipose-derived stem cells. Biomaterials, 2014, 35(7): 2234-2244.
doi: 10.1016/j.biomaterials.2013.11.081 pmid: 24360575
[22]   He X, Ao Q, Wei Y, et al.Transplantation of miRNA‐34a overexpressing adipose‐derived stem cell enhances rat nerve regeneration. Wound Repair and Regeneration, 2016, 24(3): 542-550.
doi: 10.1111/wrr.12427 pmid: 26899299
[23]   李阳. 人脂肪间充质干细胞向雪旺细胞的诱导分化及对外周面神经损伤修复的实验研究. 北京: 北京协和医学院, 2013.
[23]   Li Y, Human Adipose-Derived Mesenchymal Stem Cells Differentiate into Functional Schwann Cells and Promote Peripheral Facial Nerve Regeneration Beijing: Peking Union Medical College, 2013.
[24]   Roszek K, Makowska N, Czarnecka J, et al.Canine adipose-derived stem cells: purinergic characterization and neurogenic potential for therapeutic applications. Journal of Cellular Biochemistry, 2017, 118(1): 58-65.
doi: 10.1002/jcb.25610 pmid: 27225588
[25]   Chen X, Yang Q, Zheng T, et al.Neurotrophic effect of adipose tissue-derived stem cells on erectile function recovery by pigment epithelium-derived factor secretion in a rat model of cavernous nerve injury. Stem Cells International, 2015,2016(2):1-12.
doi: 10.1155/2016/5161248 pmid: 26783403
[26]   Jeon S H, Shrestha K R, Kim R Y, et al.Combination therapy using human adipose-derived stem cells on the cavernous nerve and low-energy shockwaves on the corpus cavernosum in a rat model of post-prostatectomy erectile dysfunction. Urology, 2016, 15(3):e880.
doi: 10.1016/j.juro.2016.02.2314
[27]   Liu S, Sandner B, Schackel T, et al.Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury. Acta Biomaterialia, 2017, 60(7): 167-180.
doi: 10.1016/j.actbio.2017.07.024 pmid: 28735026
[28]   朱俊卿, 洪军, 崔建忠, 等. 脂肪间充质干细胞治疗外伤性脑损伤. 中国组织工程研究, 2017, 21(1): 71-76.
doi: 10.3969/j.issn.2095-4344.2017.01.013
[28]   Zhu J Q, Hong J, Cui J Z, et al.Adipose mesenchymal stem cells for treatment of traumatic brain injury.Chinese Journal of Tissue Engineering Research, 2017, 21(1): 71-76.
doi: 10.3969/j.issn.2095-4344.2017.01.013
[29]   Li X, Zheng W, Bai H, et al.Intravenous administration of adipose tissue-derived stem cells enhances nerve healing and promotes BDNF expression via the TrkB signaling in a rat stroke model. Neuropsychiatric Disease and Treatment, 2016, 12(1): 1287-1293.
doi: 10.2147/NDT.S104917 pmid: 27330296
[30]   Mastro-Martínez I, Pérez-Suárez E, Melen G, et al.Effects of local administration of allogenic adipose tissue-derived mesenchymal stem cells on functional recovery in experimental traumatic brain injury. Brain Injury, 2015, 29(12): 1497-1510.
doi: 10.3109/02699052.2015.1053525 pmid: 26244701
[31]   Ban J J, Yang S, Im W, et al.Neurogenic effects of cell-free extracts of adipose stem cells. PLoS One, 2016, 11(2): e0148691.
doi: 10.1371/journal.pone.0148691 pmid: 4747593
[32]   陈云飞, 马百涛, 薛春玲, 等. 人脂肪间充质干细胞来源的外排体促进大鼠创伤性脑损伤后神经功能恢复. 基础医学与临床, 2017, 37(6): 802-807.
[32]   Chen Y F, Ma B T, Xue C L, et al.Exosome extracted from hAMSCs promotes neurological function recovery after traumatic brain injury in rats.Basic & Clinical Medicine, 2017, 37(6): 802-807.
[33]   Schwerk A, Altschüler J, Roch M, et al.Adipose-derived human mesenchymal stem cells induce long-term neurogenic and anti-inflammatory effects and improve cognitive but not motor performance in a rat model of Parkinson’s disease. Regenerative Medicine, 2015, 10(4): 431-446.
doi: 10.2217/rme.15.17 pmid: 26022763
[34]   Jahromi M, Razavi S, Amirpour N, et al.Paroxetine can enhance neurogenesis during neurogenic differentiation of human adipose-derived stem cells. Avicenna Journal of Medical Biotechnology, 2016, 8(4): 152.
[35]   . Yang Q, Du X, Fang Z, et al.Effect of calcitonin gene-related peptide on the neurogenesis of rat adipose-derived stem cells in vitro. PLoS One, 2014, 9(1): e86334.
doi: 10.1371/journal.pone.0086334 pmid: 3897681
[36]   张爽,郑冬,马月辉.脂肪干细胞在再生医学中的应用.生物技术进展, 2015, 5(4): 291-296.
[36]   Zhang S, Zheng D, Ma Y H.The application of adipose stem cells in regenerative medicine. Current Biotechnology, 2015,5(4):291-296.
[37]   赵勇. 脂肪干细胞生物学特性及参与脊髓损伤修复研究. 广州:南方医科大学, 2015.
doi: 10.7666/d.Y2911258
[37]   Zhao Y, Bio-characteristics Research of Adipose-derived Mesenchymal Stem Cell and Application in Spinal Cord Injury. Guangzhou: Southern Medical University, 2015.
doi: 10.7666/d.Y2911258
[38]   Kang J W, Kang K S, Koo H C, et al .Soluble factors-mediated immunomodulatory effects of canine adipose tissue-derived mesenchymal stem cell.Stem Cells and Development,2008,17(4): 681-693.
doi: 10.1016/j.compstruct.2004.07.015 pmid: 18717642
[39]   Widgerow A D, Salibian A A, Lalezari S, et al.Neuromodulatory nerve regeneration: adipose tissue-derived stem cells and neurotrophic mediation in peripheral nerve regeneration. Neurosci Res, 2013, 91(12):1517-1524.
doi: 10.1002/jnr.23284 pmid: 24105674
[40]   Lopatina T, Kalinina N, Karagyaur M, et al Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One, 2011, 6(3):e17899.
doi: 10.1371/journal.pone.0017899 pmid: 3056777
[41]   Tomita K, Madura T, Sakai Y, et al.Glial differentiation of human adipose-derived stem cells: implications for cell-based transplantation therapy. Neuroscience, 2013, 236(12): 55-65.
doi: 10.1016/j.neuroscience.2012.12.066 pmid: 23370324
[42]   Kingham P J, Kolar M K, Novikova L N, et al.Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem Cells and Development, 2013, 23(7): 741-754.
doi: 10.1089/scd.2013.0396 pmid: 24124760
[43]   Chan J R, Cosgaya J M, Wu Y J, et al.Neurotrophins are key mediators of the myelination program in the peripheral nervous system. Proceedings of the National Academy of Sciences, 2001, 98(25): 14661-14668.
doi: 10.1073/pnas.251543398 pmid: 11717413
[44]   J Salgado A, L Reis R, Sousa N, et al. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Current Stem Cell Research & Therapy, 2010, 5(2): 103-110.
doi: 10.2174/157488810791268564 pmid: 19941460
[45]   Kolar M K, Kingham P J.Regenerative effects of adipose-tissue-derived stem cells for treatment of peripheral nerve injuries. Biochem Soc Trans, 2014,42(3):697-701.
doi: 10.1042/BST20140004 pmid: 24849239
[1] ZHAO Jiu-mei,WANG Zhe,LI Xue-ying. Role of Signal Pathways and Related Factors Regulating Cartilage Formation in Bone Differentiation of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2021, 41(10): 62-72.
[2] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[3] Yi SONG,Cui-yun ZHANG,Yi LI,Su-su ZHANG,Shun PAN,Yun-yun TAO,Lu-yao XU,Hua-cheng HE,Jiang WU. Preparation of a Novel Surgical Sewing Thread with Control Release of Basic Fibroblast Growth Factor Through Electrospinning Technology[J]. China Biotechnology, 2019, 39(1): 55-62.
[4] Xin GAO,Pan-jian WEI,Zhuo-hong YAN,Ling YI,Xiao-jue WANG,Bin YANG,Hong-tao ZHANG. Cloning and Expression of Single Chain Antibody Against Human EGFR[J]. China Biotechnology, 2018, 38(5): 73-78.
[5] Si-teng DUAN,Guang-ran LI,Yi-yong MA,Yu-jia QIU,Yu LI,Wei WANG. Study on Physicochemical Properties and Biocompatibility of Injectable Chitosan-hyaluronic Acid Hydrogel Loaded with NGF[J]. China Biotechnology, 2018, 38(4): 70-77.
[6] ZHENG Jie, JIANG Chao, LI Xiao-kun, TIAN Hai-shan. The Progression of Fibroblast Growth Factor 6[J]. China Biotechnology, 2017, 37(4): 110-114.
[7] CHEN Kun, CAO Xue-wei, ZHANG Qin, ZHAO Jian, WANG Fu-jun. Application of EGF-like Growth Factor-derived Tumor-homing Peptide for Antineoplastic Protein[J]. China Biotechnology, 2017, 37(3): 1-9.
[8] GONG Wei-yue, TIAN Hai-shan, LI Xiao-kun, JIANG Chao. Fibroblast Growth Factor and Bone Related Diseases[J]. China Biotechnology, 2016, 36(8): 99-104.
[9] DENG Chun-pin, YANG Bo, MEI Xiong, ZHENG Zan-shun, QU Wei. Measurement and Analysis of Recombinant Basic Fibroblast Growth Factor's Free Sulfhydryl[J]. China Biotechnology, 2016, 36(6): 76-80.
[10] WANG Xiao-hua, LI Yu-ting, LIU Ya-wei, GUI Jin-qiu, ZHOU Xiao-hang, YUAN Xiao-huan, CHU Yan-hui, LIU Hai-feng. Effects of Human Truncated Variant of Hepatocyte Growth Factor (tvNK1) on Carbon Tetrachloride-induced Liver Fibrosis in Rat[J]. China Biotechnology, 2016, 36(6): 18-23.
[11] LI Rui, CAI Ping-tao, YE Li-bing, ZHANG Hong-yu, XIAO Jian. Biomaterial of [PEAD: Heparin: NGF] Coacervate Promote Function Recovery of Sciatic Nerve Regeneration in Rats[J]. China Biotechnology, 2016, 36(2): 68-72.
[12] YI Shan-yong, YANG Jing, GUAN Li-li, WANG Yan-fang, HUANG Jian, WANG Li-yong, LI Hai-yan, LI Xiao-kun, JIANG Chao. Research Progresses On The Fibroblast Growth Factor 9[J]. China Biotechnology, 2015, 35(7): 94-101.
[13] ZHANG Chao, XIANG Li-na, CHEN De-pei, LÜ Xin-xin, ZHAO Yi-tong, WANG Lu-yao, XIAO Jian, ZHANG Hong-yu. The Development of the Study on bFGF Promote the Nerve Injury Repair[J]. China Biotechnology, 2015, 35(6): 75-79.
[14] AI Jun, JIANG Chao, LIU Min, WANG Xiao-yan, TIAN Hai-shan, LI Xiao-kun. Two Oleosins Flanking the KGF-2 Improve the Expression Level of KGF-2 in Arabidopsis thaliana and Its Activity Analysis[J]. China Biotechnology, 2015, 35(1): 21-26.
[15] PANG Shi-feng, JIANG Chao, LI Wen-rong, FENG Zhi-guo, LIU Min, CHU Sheng-hui, LI Xiao-kun, ZHENG Ke-qin. Cloning of Soybean Oleosin and EGF Fusion Gene and Expression in Safflower Seeds[J]. China Biotechnology, 2014, 34(4): 71-77.