Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (4): 70-77    DOI: 10.13523/j.cb.20180410
    
Study on Physicochemical Properties and Biocompatibility of Injectable Chitosan-hyaluronic Acid Hydrogel Loaded with NGF
Si-teng DUAN1,Guang-ran LI1,Yi-yong MA1,Yu-jia QIU1,Yu LI2,Wei WANG1,3,4()
1 The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
2 School of Graduate, Liaoning University of Traditional Chinese Medicine, Shenyang 110016, China
3 Department of Orthopedics Research Institute, Jinzhou Medical University, Jinzhou 121000, China
4 Key Laboratory of Medical Tissue Engineering, Jinzhou 121000, China
Download: HTML   PDF(1559KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract   Objective:

To prepare a carrier for NGF with injectable chitosan-hyaluronic acid hydrogel,and studying its physicochemical properties and biocompatibility.

Methods:

Preparing chitosan-hyaluronic acid hydrogel crosslinked with genipin, inverted method was used to determine the gelation time; scanning electron microscopy was used to observe the morphological structure; the physical and chemical properties were measured by NGF release, vitro swelling and degradation assay; the biological properties were measured by MTT, NGF activity assay and Co-Culture experiment.

Result:

Injectable hydrogel which had a structure porous network congealed at 37℃ in about 37 minutes, and its mostly degradation degree in 8 weeks was 76%, sustained release for 21 days with biological activity. Moreover, the chitosan-hyaluronic acid hydrogel could promote RSC96 adhesion, proliferation, migration and release of cell active substances.

Conclusion:

Genipin-crosslinked chitosan-hyaluronic acid hydrogel have good biocompatibility, and can be used as a carrier of NGF. It could be used as a potential filling material for nerve conduits.



Key wordsInjectable hydrogel      Chitosan      Hyaluronic acid      Genipin      Nerve growth factor     
Received: 14 December 2017      Published: 08 May 2018
ZTFLH:  Q33  
Cite this article:

Si-teng DUAN,Guang-ran LI,Yi-yong MA,Yu-jia QIU,Yu LI,Wei WANG. Study on Physicochemical Properties and Biocompatibility of Injectable Chitosan-hyaluronic Acid Hydrogel Loaded with NGF. China Biotechnology, 2018, 38(4): 70-77.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180410     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I4/70

组别 GN含量(mg) 凝胶时间(min) 孔径(μm) 孔隙率(%)
A 1 38.25±3.10 42.90±9.51 70.35±2.28
B 2 38.25±1.26 40.68±11.87 66.97±3.23
C 3 36.00±2.83 36.33±16.65 62.13±3.43
D 4 37.00±1.83 34.27±15.31 57.37±3.61
Table 1 Gelation time, average pore size and porosity of hydrogels with different mass ratios GN
Fig.1 FTIR spectra of different gel materials
Fig.2 The SEM images of CS-HA hydrogels
(a) Group A (b) Group B (c) Group C (d) Group D (1000 ×)scale bar: 30μm
Fig.3 The swelling and degradation of CS-HA hydrogels time dynamic graph
(a)The swelling ratio of CS-HA hydrogels (b)The weight loss of CS-HA hydrogels
Fig.4 Cumulative NGF release
Fig.5 Bioactivity assay of released NGF from CS-HA hydrogels
The morphology of PC12 cells (a) In culture medium (negative control group) (b~i) In the release medium collected from CS-HA/NGF hydrogels at the 1st, 3rd, 5th, 7th, 10th,13th,17 th and 21st day (j) The percentage of PC12 cells with neurites. *** P<0.005 (100×) scale bar:50μm
Fig.6 Each group of materials 1、3、 5 days OD value *** P<0.005
Fig.7 The SEM images of RSC96 cells seeded on CS-HA hydrogels
(a) group A and (b) group B; after culture for 3 days at (a, b) 1000×, scale bar: 10 μm
[1]   Zhu S, Ge J, Wang Y , et al. A synthetic oxygen carrier-olfactory ensheathing cell composition system for the promotion of sciatic nerve regeneration. Biomaterials, 2014,35(5):1450-1461.
doi: 10.1016/j.biomaterials.2013.10.071 pmid: 24246645
[2]   Jiang X, Lim S H, Mao H Q , et al. Current applications and future perspectives of artificial nerve conduits. Experimental Neurology, 2010,223(1):86-101.
doi: 10.1016/j.expneurol.2009.09.009 pmid: 19769967
[3]   Ijkema-Paassen J, Jansen K, Gramsbergen A , et al. Transection of peripheral nerves, bridging strategies and effect evaluation. Biomaterials, 2004,25(9):1583-1592.
doi: 10.1016/S0142-9612(03)00504-0 pmid: 14697860
[4]   Davies S W, Beardsall K . Nerve growth factor selectively prevents excitotoxin induced degeneration of striatal cholinergic neurones. Neuroscience Letters, 1992,140(2):161-164.
doi: 10.1016/0304-3940(92)90092-L pmid: 1386916
[5]   Martínez-Serrano A, Bj?rklund A . Protection of the neostriatum against excitotoxic damage by neurotrophin-producing, genetically modified neural stem cells. Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 1996,16(15):4604-4616.
doi: 10.1177/0148558X9701200401 pmid: 8764649
[6]   Madduri S, Papalo?zos M, Gander B . Synergistic effect of GDNF and NGF on axonal branching and elongation in vitro. Neuroscience Research, 2009,65(1):88-97.
doi: 10.1016/j.neures.2009.06.003 pmid: 19523996
[7]   Navarro X, Krueger T B, Lago N , et al. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. Journal of the Peripheral Nervous System, 2005,10(3):229-258.
doi: 10.1111/j.1085-9489.2005.10303.x pmid: 16221284
[8]   Zhao Y Z, Jiang X, Xiao J , et al. Using NGF heparin-poloxamer thermosensitive hydrogels to enhance the nerve regeneration for spinal cord injury. Acta Biomaterialia, 2016,29:71-80.
doi: 10.1016/j.actbio.2015.10.014 pmid: 26472614
[9]   Li C, Liu K K, Tsao C Y , et al. Neuronal differentiation of human placenta-derived multi-potent stem cells enhanced by cell body oscillation on gelatin hydrogel. Journal of Bioactive & Compatible Polymers, 2014,29(6):529-544.
doi: 10.1177/0883911514553903
[10]   Carballomolina O A, Velasco I . Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries. Frontiers in Cellular Neuroscience, 2015,9:1-12.
doi: 10.3389/fncel.2015.00013 pmid: 4330895
[11]   Bellamkonda R V . Peripheral nerve regeneration: an opinion on channels, scaffolds and anisotropy. Biomaterials, 2006,27(19):3515-3518.
doi: 10.1016/j.biomaterials.2006.02.030 pmid: 16533522
[12]   ?zgenel G Y . Effects of hyaluronic acid on peripheral nerve scarring and regeneration in rats. Microsurgery, 2003,23(6):575-581.
doi: 10.1002/micr.10209 pmid: 14705074
[13]   Lei Y, Gojgini S, Lam J , et al. The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials, 2011,32(1):39-47.
doi: 10.1016/j.biomaterials.2010.08.103 pmid: 20933268
[14]   Xiao Z S, Liu Y, Palumbo F S , et al. In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials, 2004,25(7-8):1339-1348.
doi: 10.1016/j.biomaterials.2003.08.014 pmid: 14643608
[15]   Zhao Y, Wang Y, Gong J , et al. Chitosan degradation products facilitate peripheral nerve regeneration by improving macrophage-constructed microenvironments. Biomaterials, 2017,134:64-77.
doi: 10.1016/j.biomaterials.2017.02.026 pmid: 28456077
[16]   Wang Y, Zhao Y, Sun C , et al. Chitosan degradation products promote nerve regeneration by stimulating schwann cell proliferation via miR-27a/FOXO1 axis. Molecular Neurobiology, 2016,53(1):28-39.
doi: 10.1007/s12035-014-8968-2 pmid: 25399953
[17]   Bhattarai N, Gunn J, Zhang M . Chitosan-based hydrogels for controlled, localized drug delivery. Advanced Drug Delivery Reviews, 2010,62(1):83-99.
doi: 10.1016/j.addr.2009.07.019 pmid: 19799949
[18]   Xu H, Zhang L, Bao Y , et al. Preparation and characterization of injectable chitosan-hyaluronic acid hydrogels for nerve growth factor sustained release. Journal of Bioactive & Compatible Polymers Biomedical Applications, 2016,32(2):1-17.
doi: 10.1177/0883911516662068
[19]   Mi F L, Tan Y C, Liang H F , et al. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials, 2002,23(1):181-191.
doi: 10.1016/S0142-9612(01)00094-1 pmid: 11762837
[20]   Akao T, Kobashi K, Aburada M . Enzymic studies on the animal and intestinal bacterial metabolism of geniposide. Biological & Pharmaceutical Bulletin, 1994,17(12):1573-1576.
doi: 10.1248/bpb.17.1573 pmid: 7735197
[21]   Geuna S, Raimondo S, Fregnan F , et al. In vitro models for peripheral nerve regeneration. European Journal of Neuroscience, 2016,43(3):287-296.
doi: 10.1111/ejn.13054 pmid: 26309051
[22]   Mokarram N, Merchant A, Mukhatyar V , et al. Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials, 2012,33(34):8793-8801.
doi: 10.1016/j.biomaterials.2012.08.050 pmid: 22979988
[23]   Lee S K, Wolfe S W . Peripheral nerve injury and repair. Journal of the American Academy of Orthopaedic Surgeons, 2000,8(4):243-252.
doi: 10.5435/00124635-200007000-00005
[24]   Chenite A, Chaput C, Wang D , et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials, 2000,21(21):2155-2161.
doi: 10.1016/S0142-9612(00)00116-2 pmid: 10985488
[25]   Cho J, Heuzey M C, Bégin A , et al. Physical gelation of chitosan in the presence of beta-glycerophosphate: the effect of temperature. Biomacromolecules, 2005,6(6):3267-3275.
doi: 10.1021/bm050313s pmid: 16283755
[26]   Kim S, Nishimoto S K, Bumgardner J D, Haggard W O , et al. A chitosan/beta-glycerophosphate thermo-sensitive gel for the delivery of ellagic acid for the treatment of brain cancer. Biomaterials, 2010,31(14):4157-4166.
doi: 10.1016/j.biomaterials.2010.01.139 pmid: 20185170
[27]   Wang W, Zhang P, Shan W , et al. A novel chitosan-based thermosensitive hydrogel containing doxorubicin liposomes for topical cancer therapy. Journal of Biomaterials Science Polymer Edition, 2013,24(14):1649-1659.
doi: 10.1080/09205063.2013.789357 pmid: 23607789
[28]   Chao X, Xu L, Li J , et al. Facilitation of facial nerve regeneration using chitosan-β-glycerophosphate-nerve growth factor hydrogel. Acta Oto-Laryngologica, 2016,136(6):1-7.
doi: 10.3109/00016489.2015.1083120 pmid: 26366837
[29]   Sivashanmugam A, Kumar R A, Priya M V , et al. An overview of injectable polymeric hydrogels for tissue engineering. European Polymer Journal, 2015,72:543-565.
doi: 10.1016/j.eurpolymj.2015.05.014
[30]   Bunge R P . The role of the Schwann cell in trophic support and regeneration. Journal of Neurology, 1994,242(1):S19-S21.
doi: 10.1007/BF00939235 pmid: 7699403
[31]   Chiono V, Tonda-Turo C . Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Progress in Neurobiology, 2015,131:87-104.
doi: 10.1016/j.pneurobio.2015.06.001 pmid: 26093353
[32]   Morandi S, Brasca M . Early regenerative effects of NGF-transduced Schwann cells in peripheral nerve repair. Molecular & Cellular Neurosciences, 2012,50(1):103-112.
doi: 10.1016/j.mcn.2012.04.004 pmid: 22735691
[1] YU Xing-ge,LIN Kai-li. The Application of Biomaterials Based on Natural Hydrogels in Bone Tissue Engineering[J]. China Biotechnology, 2020, 40(5): 69-77.
[2] Hui-rong WU,Zhao-hui WEN. Application of Chitosan in Nerve Tissue Engineering[J]. China Biotechnology, 2019, 39(6): 73-77.
[3] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[4] Xi KANG,Ai-peng DENG,Shu-lin YANG. Research Progress of Chitosan Based Thermosensitive Hydrogels[J]. China Biotechnology, 2018, 38(5): 79-84.
[5] GAO Jiao-jiao, YANG Shu-lin. Advances in Optimization of Hyaluronic Acid Production by Genetic Engineering Technology[J]. China Biotechnology, 2017, 37(8): 72-77.
[6] GAO Jiao-jiao, YANG Shu-lin. Advances in the Production of High Molecular Weight Hyaluronic Acid by Microbial Fermentation[J]. China Biotechnology, 2017, 37(5): 118-125.
[7] LI Da-wei, HE Jin, HE Feng-li, LIU Ya-li, DENG Xu-dong, YE Ya-jing, YIN Da-chuan. Advances in Application of Silk Fibroin/Chitosan Composite in Tissue Engineering[J]. China Biotechnology, 2017, 37(10): 111-117.
[8] ZHANG Qing-fang, LIU Ru-ming, XIAO Jian-hui. Application of Hyaluronic Acid on the Cartilage Differentiation of Mesenchymal Stem Cells[J]. China Biotechnology, 2016, 36(6): 92-99.
[9] LI Rui, CAI Ping-tao, YE Li-bing, ZHANG Hong-yu, XIAO Jian. Biomaterial of [PEAD: Heparin: NGF] Coacervate Promote Function Recovery of Sciatic Nerve Regeneration in Rats[J]. China Biotechnology, 2016, 36(2): 68-72.
[10] CHEN Jian-shu, WANG Jing-xi, YI Yu, GONG Hai-ping, YING Guo-qing. The Research Progress in Hyaluronic Acid[J]. China Biotechnology, 2015, 35(2): 111-118.
[11] LI Ting, SUN Jing, ZHAO Xiang-zhe, LIAN Li-qiang, XIE Fu-qiang. Preparation and Characterization Testing of Bone Morphogenetic Protein2/ Pearl Powder/Chitosan Porous Scaffolds[J]. China Biotechnology, 2015, 35(11): 1-6.
[12] JIANG Yan-chao, JIANG Shi-yun, FU Feng-ming, HUANG Kai, KANG Xing-xin, XU Dan. Advance in Research on HA Biosynthesis and Gene Engineering[J]. China Biotechnology, 2015, 35(1): 104-110.
[13] WANG Hao, WU Li, ZHU Xiao-hua, LIU Wang-wang, YANG Gong-ming. Progress and Prospect of Chitin Deacetylase[J]. China Biotechnology, 2015, 35(1): 96-103.
[14] YUE Chang-wu, LI Yuan-yuan, LV Yu-hong, WANG Miao, SHAO Mei-yun, LIU Ming-hao, HUANG Ying. Isolation, Expression and Identification of Multifunctional Chitosanase from Marine Streptomyces olivaceus FXJ7.023[J]. China Biotechnology, 2014, 34(8): 47-53.
[15] LIU Ben, ZHANG Cai-shun, GAO Xu-bin, LI Hua-nan, KONG Xu. Study on the Preparation of Polycaprolactone/chitosan Nerve Conduit Combined with Bone Marrow Mesenchymal Stem Cells to Promote Sciatic Nerve Injury Repair in Rats[J]. China Biotechnology, 2014, 34(2): 34-38.