Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (10): 87-93    DOI: 10.13523/j.cb.20141014
    
The Research Progress of Plant DNA Methylation Variation under Stresses
XU Yan1, ZHANG Hai-ling2, XU Xiang-ling1, ZHANG Hui-xin1, YAO Lin1, ZHANG Bi-xian2, WANG Quan-wei1
1. College of Life Science and Technology, Harbin Normal University, Harbin 150025, China;
2. Heilongjiang Agricultural Science Institute, Harbin 150086, China
Download: HTML   PDF(547KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Stress refers to the organism under the stimulus of constant exposure to the environment. Plants have the ability to set up the system of protection and adaptation. Adversity stress inhibits the growth, development and reproduction of the organism. It often determines the distribution of the species. What is important is that it provides a selective dynamic evolution for a specific population. Plants can cope with stress through three different strategies, and these three different strategy is to endure, resistance and avoid or final escape. DNA methylation, as an epigenetic phenomenon, can make the gene function change without changing the DNA sequence via the effect of methylase, in response to external environmental stimuli. This change can often be passed on to offspring and form the epigenetic memory, this provides a possibility for cultivating plants resistant varieties. The research progress of plants DNA methylation modification under adversity stresses weve reviewed, aimed at further understanding the effects of DNA methylation changes to plant resistance.



Key wordsStress      DNA methylation      Epigenetic     
Received: 10 July 2014      Published: 25 October 2014
ZTFLH:  Q789  
Cite this article:

XU Yan, ZHANG Hai-ling, XU Xiang-ling, ZHANG Hui-xin, YAO Lin, ZHANG Bi-xian, WANG Quan-wei. The Research Progress of Plant DNA Methylation Variation under Stresses. China Biotechnology, 2014, 34(10): 87-93.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20141014     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I10/87


[1] 邢世岩, 李际红, 王京梅, 等. 植物表观遗传变异. 分子植物育种, 2009, 7(5): 996-1003. Xing S Y, Li J H, Wang J M, et al. Summary of epigenetic variation in plants. Molecular Plant Breeding, 2009, 7(5): 996-1003.

[2] Goldberg A D, Allis C D, Bernstein E. Epigenetics: a landscape takes shape. Cell, 2007, 128(4): 635-638.

[3] Boyko A, Kovalchuk I. Epigenetic control of plant stress response. Environmental and Molecular Mutagenesis, 2008, 49(1): 61-72.

[4] Freitag M, Selker E U. Controlling DNA methylation: many roads to one modification. Current Opinion in Genetics & Development, 2005, 15(2): 191-199.

[5] 王子成, 李忠爱, 李锁平. MSAP 技术及其在植物上的应用. 生物技术通报, 2006,S1: 195-196. Wang Z C, Li Z A, Li S P. The technology of MSAP and its applications in plant. Biotechnology Bulletin, 2006,S1: 195-196.

[6] Bird A P. CpG-rich islands and the function of DNA methylation. Nature, 1985, 321(6067): 209-213.

[7] Steward N, Ito M, Yamaguchi Y, et al. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. Journal of Biological Chemistry, 2002, 277(40): 37741-37746.

[8] Vanyushin B F, Ashapkin V V. DNA methylation in higher plants: past, present and future. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2011, 1809(8): 360-368.

[9] Harris G. Molecular biology of DNA methylation. Cell Biochemistry and Function Cell Biochem Funct, 1987, 5(4):309.

[10] 黑淑梅, 慕明涛. DNA 甲基化在植物生长发育中的作用. 安徽农业科学, 2007, 35(21): 6368-6369. Hei S M, Mu M T. Effect of DNA methylation on the plant growth and development. Journal of Anhui Agricultural Science, 2007, 35(21): 6368-6369.

[11] 李娜, 张旸, 解莉楠, 等. 植物 DNA 甲基化研究进展. 植物生理学报, 2013, 48(11): 1027-1036. Li N, Zhang Y, Xie L N, et al. Research progress in DNA methylation in plants. Plant Physiology Journal, 2013, 48(11): 1027-1036.

[12] Finnegan E J, Kovac K A. Plant DNA methyltransferases. Plant Molecular Biology, 2000, 43(2-3): 189-201.

[13] Matzke M, Kanno T, Huettel B, et al. Targets of RNA-directed DNA methylation. Current Opinion in Plant Biology, 2007, 10(5): 512-519.

[14] Zhang H, Zhu J K. RNA-directed DNA methylation. Current Opinion in Plant Biology, 2011, 14(2): 142-147.

[15] 马浪浪, 江舟, 黄小波, 等. 植物 DNA 甲基化调控研究进展. 中国生物工程杂志, 2013, 33(9): 101-110. Ma L L, Jiang Z, Huang X B, et al. Research progress of DNA methylation on plant regulation. China Biotechnology, 2013, 33(9): 101-110.

[16] Lindroth A M, Cao X, Jackson J P, et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science, 2001, 292(5524): 2077-2080.

[17] Tompa R, McCallum C M, Delrow J, et al. Genome-wide profiling of DNA methylation reveals transposon targets of CHROMOMETHYLASE3. Current Biology, 2002, 12(1): 65-68.

[18] Goodrich J, Tweedie S. Remembrance of things past: chromatin remodeling in plant development. Annual Review of Cell and Developmental Biology, 2002, 18(1): 707-746.

[19] Chinnusamy V, Zhu J K. Epigenetic regulation of stress responses in plants. Current Opinion in Plant Biology, 2009, 12(2): 133-139.

[20] 彭海, 张静. 胁迫与植物 DNA 甲基化: 育种中的潜在应用与挑战. 自然科学进展, 2009, 19(3): 248-256. Peng H, Zhang J. Plant genomic DNA methylation in response to stresses: potential applications and challenges in plant breeding. Progress in Natural Science, 2009, 19(3): 248-256.

[21] 邢燕霞, 黄韫宇, 齐艳, 等. NaCl 胁迫下黑麦草种子萌发过程中 DNA 甲基化与基因表达分析. 草地学报, 2014, 22(2): 366-374. Xing Y X, Huang Y Y, Qi Y, et al. Analyses of DNA methylation and gene expression of Lolium perenne during seed germination under NaCl stress. Acta Agrestia Sinica, 2014, 22(2): 366-374.

[22] Marconi G, Pace R, Traini A, et al. Use of MSAP markers to analyse the effects of salt stress on DNA methylation in rapeseed (Brassica napus var. oleifera). PloS one, 2013, 8(9): e75597.

[23] Zhao Y L, Yu S X, Ye W W, et al. Study on DNA cytosine methylation of cotton (Gossypium hirsutum L.) genome and its implication for salt tolerance. Agricultural Sciences in China, 2010, 9(6): 783-791.

[24] Wang W, Zhao X, Pan Y, et al. DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress. Journal of Genetics and Genomics, 2011, 38(9): 419-424.

[25] 钟兰. 盐胁迫下小麦幼苗的生理生化特性及表观遗传学研究. 武汉:武汉大学, 2009. Zhong L. Studies on the physio-biochemical properties and epigenetics of seedlings of wheat under salt stress. Wuhan:Wuhan University, 2009.

[26] 厉广辉, 张昆, 刘风珍, 等. 不同抗旱性花生品种的叶片形态及生理特性. 中国农业科学, 2014, 47(4): 644-654. Li G H, Zhang K, Li F Z, et al. Morphological and physiological traits of leaf in different drought resistant peanut cultivars. Scientia Agricultura Sinica, 2014, 47(4): 644-654.

[27] 潘雅姣, 傅彬英, 王迪, 等. 水稻干旱胁迫诱导 DNA 甲基化时空变化特征分析. 中国农业科学, 2009, 42(9): 3009-3018. Pan Y J, Fu B Y, Wang D, et al. Spatial and temporal profiling of DNA methylation induced by drought stress in rice. Scientia Agricultura Sinica, 2009, 42(9): 3009-3018.

[28] 郑小国, 陈亮, 楼巧君, 等. 干旱驯化后节水抗旱稻苗期不同发育时间 DNA 甲基化模式变化分析. 中国水稻科学, 2014, 28(1): 32-40. Zheng X G, Chen L, Lou Q H, et al. Changes in DNA methylation pattern in a water-saving and drought-resistance rice variety at three-leaf and four-leaf stages after drought domestication. Chinese Journal of Rice Science, 2014, 28(1): 32-40.

[29] 陈芳, 王子成, 何艳霞, 等. 超低温保存小麦种子和幼苗的遗传变异分析. 核农学报, 2009, 23(4): 548-554. Chen F, Wang Z C, He Y X, et al. Analysis of genetic variation of wheat seeds and seedlings caused by ultra-low-temprature preservation. Journal of Nuclear Agricultural Sciences, 2009, 23(4): 548-554.

[30] Steward N, Ito M, Yamaguchi Y, et al. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem, 2002,277(40): 37741-37746.

[31] Hao Y J, You C X, Deng X X. Analysis of ploidy and the patterns of amplified fragment length polymorphism and methylation sensitive amplified polymorphism in strawberry plants recovered from cryopreservation. CryoLetters, 2002, 23(1): 37-46.

[32] 盖树鹏, 张风, 张玉喜, 等. 低温解除牡丹休眠进程中基因组 DNA 甲基化敏感扩增多态性(MSAP) 分析. 农业生物技术学报, 2012, 20(3): 261-267. Gai S P, Zhang F, Zhang Y X, et al. Analysis of genomic DNA methylation during chilling induced endo-dormancy release by methylation sensitive amplified polymorphism (MSAP) technology in tree peony (Paeonia suffruticosa). Journal of Agricultural Biotechnology, 2012, 20(3): 261-267.

[33] Hashida S, Kitamura K, Mikami T, et al. Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus. Plant Physiology, 2003, 132(3): 1207-1216.

[34] Hashida S N, Uchiyama T, Martin C, et al. The temperature-dependent change in methylation of the antirrhinum transposon Tam3 is controlled by the activity of its transposase. The Plant Cell Online, 2006, 18(1): 104-118.

[35] 何艳霞, 王子成. 拟南芥幼苗超低温保存后 DNA 甲基化的遗传变异. 植物学报, 2009 (3): 317-322. He Y X, Wang Z C. Variation of DNA methylation in Arabidopsis thaliana seedlings after the cryopreservation. Chinese Bulletin of Botany, 2009 (3): 317-322.

[36] 欧秀芳. 重金属胁迫诱导水稻发生可遗传的表观遗传变异及其可能作用于水稻提高抗重金属能力的机制研究. 长春: 东北师范大学, 2009. Ou X F. Heavy metal stress induced inheritable alterations of epigenetic which may contribute to plant enhanced resistance to heavy metal damage in rice. Changchun: Northeast Normal University, 2009.

[37] 李照令, 王鹤潼, 陈瑞娟, 等. 运用 MSAP 研究镉胁迫对拟南芥幼苗基因甲基化的影响. 农业环境科学学报, 2014, 33(1): 28-36. Li Z L, Wang H T, Chen R J, et al. Studying genomic methylation of Arabidopsis thaliana seedlings under cadmium stress using MSAP. Journal of Agriculture Environment Science, 2014, 33(1): 28-36.

[38] 杨金兰, 柳李旺, 龚义勤, 等. 镉胁迫下萝卜基因组 DNA 甲基化敏感扩增多态性分析. 植物生理与分子生物学学报, 2007, 33(3): 219-226. Yang J L, Liu L W, Gong Y Q, et al. Analysis of genomic DNA methylation level in radish under cadmium stress by methylation-sensitive amplified polymorphism technique. Journal of Plant Physiology and Molecular Biology, 2007, 33(3): 219-226.

[39] Labra M, Grassi F, Imazio S, et al. Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L. Chemosphere, 2004, 54(8): 1049-1058.

[40] Aina R, Sgorbati S, Santagostino A, et al. Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiologia Plantarum, 2004, 121(3): 472-480.

[41] Ou X, Zhang Y, Xu C, et al. Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.). PloS One, 2012, 7(9): e41143.

[42] 庄婷婷. NO 胁迫诱导水稻 DNA 甲基化变异及转座子和基因的转录激活. 长春:东北师范大学, 2008. Zhuang T T. NO stress induce variation of DNA methylation and transcriptional activation of mobile elements and genes in rice (Oryza Sativa L.) . Changchun: Northeast Normal University, 2008.

[43] 殷文超. 一氧化氮 (NO) 胁迫诱导水稻转座子发生遗传和表观遗传变异. 长春:东北师范大学, 2010. Yin W C. Nitric oxide stress-induced genetic and epigenetic variations of transposable elements in rice. Changchun: Northeast Normal University, 2010.

[44] 李利红, 仪慧兰, 王艺雯, 等. 二氧化硫胁迫诱导拟南芥 NIT2 基因 DNA 甲基化修饰.农业环境科学学报, 2012, 31(4): 685-690. Li L H, Yi H L, Wang Y W, et al. Sulfur dioxide induces DNA methylation alteration of a gene encoding nitrilase 2 protein in Arabidopsis plants. Journal of Agro-Environment Science,2012, 31(4): 685-690.

[45] Kovalchuk I, Kovalchuk O, Kalck V, et al. Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature,2003, 423:760-762.

[46] Boyko A, Kathiria P, Zemp F J, et al. Transgenerational changes in the genome stability and methylation in pathogen-infected plants. Nucl Acids Res, 2007,35(5):1714-1725.

[47] Akimoto K, Katakami H, Kim H J, et al. Epigenetic inheritance in rice plants. Annals of Botany, 2007, 100(2): 205-217.

[48] Boyko A, Kovalchuk I. Epigenetic control of plant stress response. Environmental and Molecular Mutagenesis, 2008, 49(1): 61-72.

[49] Sha A H, Lin X H, Huang J B, et al. Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis. Molecular Genetics and Genomics, 2005, 273(6): 484-490.

[50] 刘丽, 张志明, 李代波, 等. 玉米纹枯病菌侵染的病理学观察及基因组甲基化敏感扩增多态性分析. 农业生物技术学报, 2011, 19(2): 243-249. Liu L, Zhang Z M, Li D B, et al. Analysis of infection process and methylation-sensitive amplified polymorphism in Zea mays genome stressed by Rhizoctonia solani. Journal of Agricultural Biotechnology, 2011, 19(2): 243-249.

[51] Dowen R H, Pelizzola M, Schmitz R J, et al. Widespread dynamic DNA methylation in response to biotic stress. Proceedings of the National Academy of Sciences, 2012, 109(32): 2183-2191.

[52] Wada Y, Miyamoto K, Kusano T, et al. Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Molecular Genetics and Genomics, 2004, 271(6): 658-666.

[53] 许静静, 杨凯, 王文和, 等. 病毒侵染对西伯利亚百合 DNA 甲基化的影响. 西北植物学报,2011, 31(5): 935-941. Xu J J, Yang K, Wang W H, et al. Effect of virus Infection on DNA methylation of Lilium‘Siberia’. Journal of Northwest Plants, 2011, 31(5): 935-941.

[54] Fieldes M A, Schaeffer S M, Krech M J, et al. DNA hypomethylation in 5-azacytidine-induced early-flowering lines of flax. Theoretical and Applied Genetics, 2005, 111(1): 136-149.

[55] Kou H P, Li Y, Song X X, et al. Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). Journal of Plant Physiology, 2011, 168(14): 1685-1693.

[56] Wang H, Feng Q, Zhang M, et al. Alteration of DNA methylation level and pattern in sorghum (Sorghum bicolor L.) pure-lines and inter-line F1 hybrids following low-dose laser irradiation. Journal of Photochemistry and Photobiology B: Biology, 2010, 99(3): 150-153.

[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] YANG Wan-bin,XU Yan,ZHUO Shi-xuan,WANG Xin-yi,LI Ya-jing,GUO Yi-fan,ZHANG Zheng-guang,GUO Yuan-yuan. Progress of Long Non-coding RNAs Related Epigenetic Modifications in Cancer[J]. China Biotechnology, 2021, 41(8): 59-66.
[3] YAN Yu-jia,ZOU Ling. Research Progress on the Biogenesis and Function of piRNAs[J]. China Biotechnology, 2021, 41(5): 45-50.
[4] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[5] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.
[6] HAO Xiao-ting,LIU Jun-jie,DENG Yu-lin,ZHANG Yong-qian. Radiation Biosensor Based on Promoter of SOS Reaction and Oxidative Stress Reaction[J]. China Biotechnology, 2020, 40(7): 30-40.
[7] GAO Xiao-peng,HE Meng-chao,XU Ke,LI Chun. Research Progress on pH Regulation in the Process of Industrial Microbial Fermentation[J]. China Biotechnology, 2020, 40(6): 93-99.
[8] Yi-man LI,Qin ZHOU. The Effects of Herpud1 on Metanephric Mesenchymal Cells and Its Mechanism[J]. China Biotechnology, 2018, 38(3): 9-15.
[9] YAO Chang-hong, WU Pei-chun, CAO Xu-peng, LIU Jiao, JIANG Jun-peng, XUE Song. Comparative Characterization of Two Arthrospira Strains Isolated from Full-scale Raceway Pond[J]. China Biotechnology, 2017, 37(5): 28-37.
[10] ZHANG Xue, TAO Lei, QIAO Sheng, DU Bing-hao, GUO Chang-hong. Roles of Glutathione S-transferase in Plant Tolerance to Abiotic Stresses[J]. China Biotechnology, 2017, 37(3): 92-98.
[11] SHAN hong-yu, LIU Ren-ze, HAO Meng-qi, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin. Phytoferritin and the Response to Oxidative Stress[J]. China Biotechnology, 2017, 37(2): 121-126.
[12] ZHANG Li-li, XU Bi-yu, LIU Ju-hua, JIA Cai-hong, ZHANG Jian-bin, JIN Zhi-qiang. Analysis of Banana MaASR1 Gene Expression Profiles in Arabidopsis Under Drought Stress[J]. China Biotechnology, 2017, 37(11): 59-73.
[13] WANG Li-qun, LU Hong-zhong, CHU Ju, WANG Yong-hong. Dissolved Carbon Dioxide Effects on Glucoamylase Synthesis of Aspergillus niger in Batch and Chemostat Cultures[J]. China Biotechnology, 2017, 37(1): 27-37.
[14] HAN Han, BAO Dan-qi, YANG Fei-yun, LIU Kun, YANG Tian-rui, YANG Qi, LI Guo-jing, WANG Rui-gang. The Cloning and Function Analysis in Flavonoid Pathway of CiCHIL from Caragana intermedia[J]. China Biotechnology, 2016, 36(9): 11-20.
[15] SU Zhi-zhe, WANG Xue-hua, YANG Hua, SUN Huan, WEI Wei. Transcriptome Analysis of Cadmium Exposed Jatropha curcas[J]. China Biotechnology, 2016, 36(4): 69-77.