Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (05): 24-30    DOI:
    
Expression and Purification of Functional HuGALNT3 without the Transmembrane Domain (huGALNT3-sol) in Pichia pastoris
KONG Yun1, GAO Hai-tao1, LI Shu-fang1, WANG Peng1,2, GU Guo-feng2, GU Li1,2
1. State key laboratory for Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China;
2. National Glycoengineering Research Center, Jinan 250100, China
Download: HTML   PDF(865KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:In order to research the bioactivity of GALNT3, the truncated part of GALNT3 (huGALNT3-sol) which was deleted of the hydrophobic trans-membrane domain were obtained using Pichia pastoris expression system, and assayed the transferring GalNAc activity of recombinant huGALNT3-sol. Methods: The gene of human GALNT3-sol (1 755 bp)was amplified from pET15b/ GALNT3-sol and cloned into expression vector pPIC9k, and the recombinant plasmid was transformed into Pichia pastoris GS115 strain through electroporation. The high copy recombinant strains with high-level huGALNT3-sol production were screened out by MD plate and G418. High level of huGALNT3-sol was obtained in BMMY medium the induction of methanol, and purified from the supernatant with Ni-NAT.The identity of the recombinant protein was confirmded by SDS-PAGE and then Western blotting analysis. HPLC and MALDI-TOF-MS analysis were used to identify the bioactivity of recombinant huGALNT3-sol. Results:The recombinant Pichia pastoris which could secretory express the human GALNT3-sol protein was constructed successfully. High level of huGALNT3-sol was obtained in BMMY medium (pH 6.0) after 96 hours induction of 20℃ and 0.5% methanol, with the highest yield of 5mg/L in shake flask culture. The identity of the recombinant protein was confirmed by Western blot analysis and the huGALNT3-sol expressed in Pichia pastoris is in higher molecular weight glycoforms. The activity assay showed the recombinant huGALNT3-sol has the activity of transferring GalNAc to Ser/Thr residues in peptide. Conclusion:The human GALNT3-sol, which has the activity of transferring GalNAc to Ser/Thr residues in peptide, was successfully expressed and purified in Pichia pastoris. It provides support for the further research and application of GALNT3.



Key wordsGALNT3      Pichia pastoris      Secretory expression      Activity     
Received: 13 January 2012      Published: 25 May 2012
ZTFLH:  Q786  
Cite this article:

KONG Yun, GAO Hai-tao, LI Shu-fang, WANG Peng, GU Guo-feng, GU Li. Expression and Purification of Functional HuGALNT3 without the Transmembrane Domain (huGALNT3-sol) in Pichia pastoris. China Biotechnology, 2012, 32(05): 24-30.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I05/24


[1] Borsig L, Wong R, Feramisco J, et al. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci U S A, 2001, 98 (6): 3352-3357.

[2] Kawakubo M, Ito Y, Okimura Y, et al. Natural antibiotic function of a human gastric mucin against Helicobacter pylori infection. Science, 2004, 305(5686): 1003-1006.

[3] Rosen S D, Hwang S T, Giblin P A, et al. High-endothelial-venule ligands for L-selectin: identification and functions. Biochem Soc Trans, 1997, 25 (2): 428-433.

[4] Rudd P M, Elliott T, Cresswell P, et al. Glycosylation and the immune system. Science, 2001, 291(5512): 2370-2376.

[5] Homa F L, Hollander T, Lehman D J, et al. Isolation and expression of a cDNA clone encoding a bovine UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. J Biol Chem, 1993, 268 (17): 12609-12616.

[6] Schwientek T, Bennett E P, Flores C, et al. Functional conservation of subfamilies of putative UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferases in Drosophila, Caenorhabditis elegans, and mammals. One subfamily composed of l(2)35Aa is essential in Drosophila. J Biol Chem, 2002, 277 (25): 22623-22638.

[7] Ten Hagen K G, Fritz T A, Tabak L A. All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology, 2003, 13 (1): 1R-16R.

[8] Gill D J, Chia J, Senewiratne J, et al. Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes. J Cell Biol, 2010, 189 (5): 843-858.

[9] Fritz T A, Raman J, Tabak L A. Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-2. J Biol Chem, 2006, 281 (13): 8613-8619.

[10] Mardberg K, Nystrom K, Tarp M A, et al. Basic amino acids as modulators of an O-linked glycosylation signal of the herpes simplex virus type 1 glycoprotein gC: functional roles in viral infectivity. Glycobiology, 2004, 14 (7): 571-581.

[11] Bennett E P, Hassan H, Mandel U, et al. Cloning and characterization of a close homologue of human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase-T3, designated GalNAc-T6. Evidence for genetic but not functional redundancy. J Biol Chem, 1999, 274 (36): 25362-25370.

[12] Wandall H H, Hassan H, Mirgorodskaya E, et al. Substrate specificities of three members of the human UDP-N-acetyl-alpha-D-galactosamine: Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3. J Biol Chem, 1997, 272 (38): 23503-23514.

[13] Hashimoto R, Fujitani N, Takegawa Y, et al. An efficient approach for the characterization of mucin-type glycopeptides: the effect of O-glycosylation on the conformation of synthetic mucin peptides. Chemistry, 2010, 17 (8): 2393-2404.

[14] Raman J, Fritz T A, Gerken T A, et al. The catalytic and lectin domains of UDP-GalNAc:polypeptide alpha-N-Acetylgalactosaminyltransferase function in concert to direct glycosylation site selection. J Biol Chem, 2008, 283 (34): 22942-22951.

[15] Imberty A, Piller V, Piller F, et al. Fold recognition and molecular modeling of a lectin-like domain in UDP-GalNac:polypeptide N-acetylgalactosaminyltransferases. Protein Eng, 1997, 10 (12): 1353-1356.

[16] Hazes B. The (QxW)3 domain: a flexible lectin scaffold. Protein Sci, 1996, 5 (8): 1490-1501.

[17] Pedersen J W, Bennett E P, Schjoldager K T, et al. Lectin domains of polypeptide GalNAc transferases exhibit glycopeptide binding specificity. J Biol Chem, 2011, 286 (37): 32684-32696.

[18] Perrine C L, Ganguli A, Wu P, et al. Glycopeptide-preferring polypeptide GalNAc transferase 10 (ppGalNAc T10), involved in mucin-type O-glycosylation, has a unique GalNAc-O-Ser/Thr-binding site in its catalytic domain not found in ppGalNAc T1 or T2. J Biol Chem, 2009, 284 (30): 20387-20397.

[19] Topaz O, Shurman D L, Bergman R, et al. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat Genet, 2004, 36 (6): 579-581.

[20] 孔蕴, 郜海涛, 李树芳, 等. 人 GALNT3- sol 蛋白的原核表达和抗体制备. 细胞与分子免疫学杂志, 2011, 27 (10): 1117-1120. Kong Y, Gao H T, Li S F, et al. Prokaryotic expression and antibody preparation of human GALNT3-sol protein. Chinese Journal of Cellular and Molecular Immunology, 2011, 27 (10): 1117-1120.

[21] Cheng L, Tachibana K, Iwasaki H, et al. Characterization of a novel human UDP-GalNAc transferase, pp-GalNAc-T15. FEBS Lett, 2004, 566 (1-3): 17-24.

[22] Iwasaki H, Zhang Y, Tachibana K, et al. Initiation of O-glycan synthesis in IgA1 hinge region is determined by a single enzyme, UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2. J Biol Chem, 2003, 278 (8): 5613-5621.

[23] Yoshimura Y, Matsushita T, Fujitani N, et al. Unexpected tolerance of glycosylation by UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase revealed by electron capture dissociation mass spectrometry: carbohydrate as potential protective groups. Biochemistry, 2010, 49 (28): 5929-5941.

[24] 周嘉梁,吴士良. 肿瘤细胞O-GalNAc聚糖的生物合成途径. 生命的化学, 2004, 24(4): 350-353. Zhou J L, Wu S L. Pathways of O-GalNAc Glycan Biosynthesis in Cancer Cells. Chemistry of Life, 2004, 24 (4): 350-353.

[25] DeFrees S, Wang Z G, Xing R, et al. GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli. Glycobiology, 2006, 16 (9): 833-843.

[26] Henderson G E, Isett K D, Gerngross T U. Site-specific modification of recombinant proteins: a novel platform for modifying glycoproteins expressed in E. coli. Bioconjug Chem, 2011, 22 (5): 903-912.

[1] WEI Zi-xiang,ZHANG Liu-qun,LEI Lei,HAN Zheng-gang,YANG Jiang-ke. Improving the Activity and Thermal Stability of Thermomyces lanuginosus Lipase by Rational Design[J]. China Biotechnology, 2021, 41(2/3): 63-69.
[2] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[3] CHEN Dong,LI Cheng-cheng,SHI Zhong-ping. Lactobacillus plantarum Exopolysaccharide Coated High-Stable Selenium Nanoparticles and Its Antioxidant Activity[J]. China Biotechnology, 2020, 40(9): 18-27.
[4] LV Yi-fan,LI Geng-dong,XUE Nan,LV Guo-liang,SHI Shao-hui,WANG Chun-sheng. Prokaryotic Expression, Purification of LbCpf1 Protein Gene and in Vitro Cleavage Activity Assay[J]. China Biotechnology, 2020, 40(8): 41-48.
[5] LI Zhi-gang,CHEN Bao-feng,ZHANG Zhong-hua,CHANG Jing-ling. The Physiological Mechanism for Enhanced Cyclic Adenosine Monophosphate Biosynthesis by Auxiliary Energy Substance[J]. China Biotechnology, 2020, 40(1-2): 102-108.
[6] ZHANG Xiao-mao,GUO Jing-han,HONG Jie-fang,LU Hai-yan,DING Juan-juan,ZOU Shao-lan,FAN Huan. Evaluation of UPR Response in Yeast by Using UPRE-lac Z as a Reporter Gene[J]. China Biotechnology, 2020, 40(10): 1-9.
[7] HU Yan-hong,GONG Xue-mei,Ding Liu-liu,GAO Song,LI Ting-ting. Highly Efficient Expression and Purification of Ketoreductase CgKR2 Using Brevibacillus choshinensis SP3[J]. China Biotechnology, 2019, 39(8): 59-65.
[8] Ting-ting KAN,Xun-cheng ZONG,Yong-jun SU,Ting-ting WANG,Chuang LI,Die HU,Min-chen WU. Site-directed Mutagenesis of PvEH1 to Improve Its Catalytic Properties towards ortho-Methylphenyl Glycidyl Ether[J]. China Biotechnology, 2019, 39(6): 9-16.
[9] Long-bing YANG,Guo GUO,Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG. Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica[J]. China Biotechnology, 2019, 39(4): 24-31.
[10] YANG Fei-yun,YANG Tian-rui,LIU Kun,CUI Shuang,WANG Rui-gang,LI Guo-jing. Flavonoids Metabolism and Antimicrobial Activity of Arabidopsis Heterologous Expressing CiRS Gene[J]. China Biotechnology, 2019, 39(11): 22-30.
[11] SHI Chao-shuo,LI Deng-ke,CAO Xue,YUAN Hang,ZHANG Yu-wen,YU Jiang-yue,LU Fu-ping LI Yu. The Effect on Heterologous Expression of Alkaline Protease AprE by Two Different Promoter and Combinatorial[J]. China Biotechnology, 2019, 39(10): 17-23.
[12] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[13] Min-hua XU,Jing-jing ZHANG,Xiao-bao JIN,Xia-bo LI,Yan WANG,Yan MA. Cloning\Expression and Bioactivity of the Chitinase Gene ChiA from the Endophytes of Periplaneta americana[J]. China Biotechnology, 2019, 39(1): 31-37.
[14] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[15] Ying CHEN,Hai-peng XIAO,Xiao-yan ZHANG,Qing-wei GONG,Li MA,Wen-jia LI,Xiao-feng CHEN. Expression and Characterization of Recombinant GLP-1-IgG4-Fc Fusion Protein[J]. China Biotechnology, 2018, 38(7): 58-66.