Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (02): 39-44    DOI:
    
Effects of carAB and pyrBI Overexpression on Cytidine Fermentation in Escherichia coli
WU Xiao-jiao, SUN Jia-kai, HUO Wen-ting, XIE Xi-xian, XU Qing-yang, CHEN Ning
Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, School of Bioengineering, Tianjin University of Science and Technology, Tianjin 300457, China
Download: HTML   PDF(599KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To study the effects of carbamoyl phosphate synthetase and aspartate carbamoyl transferase on cytidine fermentation of E. coli, carAB and pyrBI were amplified by PCR from E. coli A39 (△cdd) chromosome and ligated into the pSTV28 vector. Then the recombinant plasmids pSTV28-carAB and pSTV28-pyrBI were transformed into E. coli A39 (△cdd). And the effects of pSTV28-carAB and pSTV28-pyrBI on cell growth, cytidine and uridine production and accumulation of acetic acid were studied by fermentation experiments. The results suggested that cytidine productions of E. coli A39-AB and A39-BI were 583.5 mg/L and 408.4 mg/L, which were increased by 85.3% and 29.7% compared with A39 (△cdd). It shows that Overexpressing carAB and pyrBI operon can promote the accumulation of cytidine.



Key wordscarAB pyrBI      Cytidine      Fermentation      Overexpression     
Received: 14 November 2011      Published: 25 February 2012
ZTFLH:  Q786  
Cite this article:

WU Xiao-jiao, SUN Jia-kai, HUO Wen-ting, XIE Xi-xian, XU Qing-yang, CHEN Ning. Effects of carAB and pyrBI Overexpression on Cytidine Fermentation in Escherichia coli. China Biotechnology, 2012, 32(02): 39-44.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I02/39


[1] 姜妍, 许爱军. 国内外抗病毒药物研发进展. 黑龙江医药, 2006, 19(5):388-392. Jiang Y, Xu A J. Heilongjiang Medicine Journal, 2006, 19(5):388-392.

[2] Kazarinova L A, Livshits V A, Preobrazhenskaya E S, et al. Method for producing uridine-5'-monophosphate by fermentation using mutant strains of coryneform bacteria: United States Patent, 6344344. 2002-02-05.

[3] 王锐. 嘧啶核苷的研究进展. 生物技术通讯, 2007, 18(3): 539-542. Wang R. Letters in Biotechnology, 2007, 18(3): 539-542.

[4] 乔福宾. 微生物产生核苷和核酸. 工业微生物, 1998, 28(1): 22-27. Qiao F B. Industrial Microbiology, 1998, 28(1): 22-27.

[5] 苏静, 邓培生, 谢希贤, 等. 基于cdd基因敲除和嘧啶操纵子转移的胞苷产生菌的研究. 天津科技大学学报, 2010, 25(5): 1-5. Su J, Deng PS, Xie X X, et al. Journal of Tianjing University of Science & Technology, 2010, 25(5): 1-5.

[6] 施巧琴, 吴松刚. 工业微生物育种学. 第三版,北京: 科学出版社, 2009.349-353. Shi Q Q, Wu S G. Industrial Microbiology Breeding. 3rd ed, Beijing: Science Press, 2009.349-353.

[7] Andersen J T, Jensen K F, Poulsen P. Role of transcription pausing in the control of the pyrE attenuator in Escherichia coli. Mol Microbiol, 1991, 5(2): 327-333.

[8] 王文棋, 盖颖, 陆海, 等. 重组酶Cre基因在大肠杆菌中的高效表达及其一步纯化和活性检测. 北京林业大学学报, 2006, 28(3): 57-60. Wang W Q, Gai Y, Lu H, et al. Journal of Beijing Forestry University, 2006, 28(3): 57-60.

[9] Satoru Asahi, Yutaka Tsunemi. Cytidine production by mutants of Bacillus subtilis. Biosci Biotech Biochem, 1994, 58(8): 1399.

[10] Mauricio R, Melinda E W, Theresa G, et al. Pyrimidine nucleotide de novo biosynthesis as a model of metabolic control. Systems Biology, 2007, 21: A265.

[11] Lee S Y. High cell-density culture of Escherichia coli. Tibtech, 1996, 14: 98-105.

[12] Joseph S, Ursula R. Glucose and acetate metabolism in E.coli-system level analysis and biotechnological applications in protein production processes. Biomedical and Life Science, 2009,10:377-400.

[13] Han K, Lim H C, Hong J. Acetic acid formation in Escherichia coli. Biotechnol Bioeng, 1992, 39: 663-771.

[14] Luli G W, Stroh W R. Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentation. Applied Environmental Microbiology, 1990, 56(4): 1004-1011.

[15] 方海田, 谢希贤, 徐庆阳, 等. 微生物发酵法生产胞嘧啶核苷的研究进展. 发酵科技通讯, 2010, 39(3):48-51. Fang H T, Xie X X, Xu Q Y, et al. Fermentation Technology of Communications, 2010, 39(3):48-51.

[16] Switzer R L, Turner R J, Lu Y. Regulation of the Bacillus subtilis pyrimidine biosynthetic operon by transcriptional attenuation:control of gene expression by an mRNA-binding protein. Prog Nucleic Acid Res Mol Biol, 1999, 62(2): 329-367.

[17] 张蓓. 代谢工程. 天津: 天津大学出版社, 2003.90-113. Zhang B. Metabolic Engineering. Tianjin: Tianjin University Press, 2003. 90-113.

[1] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[2] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[3] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[4] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[5] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[6] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[7] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[8] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[9] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[10] Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance[J]. China Biotechnology, 2018, 38(8): 59-68.
[11] Fan SUN,Ling-qia SU,Kang ZHANG,Jing WU. D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells[J]. China Biotechnology, 2018, 38(7): 83-88.
[12] Ya-chao FAN,Lin ZHANG,Xiao-shu LI,Peng-xiang WANG,Xin-wu YAO,Kai QIAO. Study on the Fermentation of 2,3-Butanediol by Klebsiella pneumoniae CICC10011[J]. China Biotechnology, 2018, 38(2): 68-74.
[13] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.
[14] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.
[15] LIU Cui-cui, HU Meng-die, WANG Zhi, DAI Jun, YAO Juan, LI Pei, LI Zhi-jun, CHEN Xiong, LI Xin. Metabolic Characteristics of Intracellular Trehalose Accumulation in Zygosaccharomyces rouxii[J]. China Biotechnology, 2017, 37(9): 41-47.