Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (08): 118-125    DOI: Q756
    
amiRNAi: A New Approach for Highly Specific and Stable Gene Silencing
YE Mei-xia,LIU Jun-mei,LI Hao,CUI Dong-qing,WANG Jing-cheng,ZHANG Zhi-yi,AN Xin-min
National Engineering Laboratory for Tree Breeding; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of State Forestry Administration, Beijing Forestry University, Beijing 100083, China
Download: HTML   PDF(598KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

RNA interference (RNAi) is an efficient tool for gene silencing. Due to enormous advance of molecular biology and biotechnology achieved in recent years, it has evolved into another excellent technology for gene silencing with higher specificity called artificial microRNA interference (amiRNAi). amiRNA, approximately 21 nucleotides long, which could be generated by endogenous miRNA precursors, can mediate the silencing of single or multiple genes targeted without affecting expressions of unrelated genes. Compared with the conventional RNAi, this novel technology has advantages of high specificity, satisfactory stability as well as precise predictability of silencing effect. Thus the amiRNAi definitely proves to be one of the most powerful tools for the functional analysis of heterogeneous genes. Also it promises a bright future for both study and application of genes'negative regulation.The very principle of amiRNAi was reviewed and its superiority and potential applications were discussed.



Key wordsamiRNAi      miRNA      siRNA      gene silencing     
Received: 23 March 2010      Published: 25 August 2010
Cite this article:

XIE Mei-Xia, LIU Jun-Mei, LI Hao, CUI Dong-Qing, WANG Jing-Cheng, ZHANG Zhi-Yi, AN Xin-Min. amiRNAi: A New Approach for Highly Specific and Stable Gene Silencing. China Biotechnology, 2010, 30(08): 118-125.

URL:

https://manu60.magtech.com.cn/biotech/Q756     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I08/118

[1] Hannon G J. RNA interference. Nature, 2002, 418 (6894): 244251. 
[2] Meister G, Tuschl T. Mechanisms of gene silencing by doublestranded RNA. Nature, 2004, 431 (7006): 343349. 
[3] Birmingham A, Anderson E M, Reynolds A, et al. 3' UTR seed matches, but not overall identity, are associated with RNAi offtargets. Nat Methods, 2006, 3 (3): 199204. 
[4] Chi J T, Chang H Y, Wang N N, et al. Genomewide view of gene silencing by small interfering RNAs. Proc Natl Acad Sci U S A, 2003, 100 (11): 63436346. 
[5] Zeng Y, Wagner E J, Cullen B R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell, 2002, 9 (6): 13271333. 
[6] Parizotto E A, Dunoyer P, Rahm N, et al. In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev, 2004, 18 (18): 22372242. 
[7] Schwab R, Ossowski S, Riester M, et al. Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell, 2006, 18 (5): 11211133. 
[8] Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116 (2): 281297. 
[9] Myers J W, Jones J T, Meyer T, et al. Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing. Nat Biotechnol, 2003, 21 (3): 324328. 
[10] Vaucheret H, Vazquez F, Crete P, et al. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev, 2004, 18 (10): 11871197. 
[11] Schwab R, Palatnik J F, Riester M, et al. Specific effects of microRNAs on the plant transcriptome. Dev Cell, 2005, 8 (4): 517527. 
[12] Ossowski S, Schwab R, Weigel D. Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J, 2008, 53 (4): 674690. 
[13] Izant J G, Weintraub H. Inhibition of thymidine kinase gene expression by antisense RNA: a molecular approach to genetic analysis. Cell, 1984, 36 (4): 10071015. 
[14] 崔欣,陈庆山,杨庆凯,等. 植物转基因沉默与消除. 植物学通报, 2002, 19 (3): 374379. Cui X, Chen Q S, Yang Q K, et al. Chinese Bulletin of Botany, 2002, 19 (3): 374379. 
[15] Jorgensen R A, Doetsch N, Muller A, et al. A paragenetic perspective on integration of RNA silencing into the epigenome and its role in the biology of higher plants. Cold Spring Harb Symp Quant Biol, 2006, 71: 481485. 
[16] Watson J M, Fusaro A F, Wang M, et al. RNA silencing platforms in plants. FEBS Lett, 2005, 579 (26): 59825987. 
[17] 曾晓珊,戴良英,刘雄伦,等. dsRNA介导植物基因沉默及其应用. 生命科学, 2007, 19 (2): 132138. Zeng X S, Dai L Y, Liu X L, et al. Chinese Bulletin of Life Science, 2007, 19 (2): 132138. 
[18] 傅达奇,朱本忠,赵晓丹,等. 植物中病毒诱导基因沉默的研究进展. 中国生物工程杂志, 2005, (增刊): 6266. Fu D Q, Zhu B Z, Zhao X D, et al. Chinese Biotechnology, 2005,suppl: 6266. 
[19] Wesley S V, Helliwell C A, Smith N A, et al. Construct design for efficient, effective and highthroughput gene silencing in plants. Plant J, 2001, 27 (6): 581590. 
[20] Chuang C F, Meyerowitz E M. Specific and heritable genetic interference by doublestranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci U S A, 2000, 97 (9): 49854990. 
[21] Khraiwesh B, Ossowski S, Weigel D, et al. Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol, 2008, 148 (2): 684693. 
[22] Aufsatz W, Mette M F, van der Winden J, et al. RNAdirected DNA methylation in Arabidopsis. Proc Natl Acad Sci U S A, 2002, 99 Suppl 4: 1649916506. 
[23] Schwarz D S, Hutvagner G, Du T, et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell, 2003, 115 (2): 199208. 
[24] Khvorova A, Reynolds A, Jayasena S D. Functional siRNAs and miRNAs exhibit strand bias. Cell, 2003, 115 (2): 209216. 
[25] Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol, 2004, 22 (3): 326330. 
[26] Mallory A C, Reinhart B J, JonesRhoades M W, et al. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region. EMBO J, 2004, 23 (16): 33563364. 
[27] Schwab R. Cloning of artificial microRNAs.2005,http://wmd3.weigelworld.org/cgi-bin/webapp. 
[28] Zhao T, Wang W, Bai X, et al. Gene silencing by artificial microRNAs in Chlamydomonas. Plant J, 2009, 58 (1): 157164. 
[29] Alvarez J P, Pekker I, Goldshmidt A, et al. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell, 2006, 18 (5): 11341151. 
[30] Warthmann N, Chen H, Ossowski S, et al. Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE, 2008, 3 (3): e1829. 
[31] Liu C, Zhang L, Sun J, et al. The artificial microRNA mediates GUSGFP gene silencing using athmiR169d precursor as backbone. Life Sci J, 2009, 6 (2): 17. 
[32] Hu T, Chen P, Ma L, et al. Construction of an artificial microRNA expression vector for simultaneous inhibition of multiple genes in mammalian cells. Int J Mol Sci, 2009, 10: 21582168. 
[33] Molnar A, Bassett A, Thuenemann E, et al. Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J, 2009, 2009, 58(1):165174. 
[34] Qu J, Ye J, Fang R. Artificial microRNAmediated virus resistance in plants. J Virol, 2007, 81 (12): 66906699. 
[35] Howell M D, Fahlgren N, Chapman E J, et al. Genomewide analysis of the RNAdependent RNA polymerase6/DicerLike4 pathway in Arabidopsis reveals dependency on miRNA and tasiRNAdirected targeting. Plant Cell, 2007, 19 (3): 926942. 
[36] Voinnet O. Noncell autonomous RNA silencing. FEBS Lett, 2005, 579 (26): 58585871. 
[37] Lu C, Tej S S, Luo S, et al. Elucidation of the small RNA component of the transcriptome. Science, 2005, 309 (5740): 15671569. 
[38] Yoo B C, Kragler F, VarkonyiGasic E, et al. A systemic small RNA signaling system in plants. Plant Cell, 2004, 16 (8): 19792000. 
[39] Jones L, Hamilton A J, Voinnet O, et al. RNADNA interactions and DNA methylation in posttranscriptional gene silencing. Plant Cell, 1999, 11 (12): 22912301. 
[40] Romano N, Macino G. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol, 1992, 6 (22): 33433353. 
[41] Rohr J, Sarkar N, Balenger S, et al. Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. Plant J, 2004, 40 (4): 611621. 
[42] Choi K, Park C, Lee J, et al. Arabidopsis homologs of components of the SWR1 complex regulate flowering and plant development. Development, 2007, 134 (10): 19311941. 
[43] Iida K, Seki M, Sakurai T, et al. Genomewide analysis of alternative premRNA splicing in Arabidopsis thaliana based on fulllength cDNA sequences. Nucleic Acids Res, 2004, 32 (17): 50965103. 
[44] Niu Q W, Lin S S, Reyes J L, et al. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol, 2006, 24 (11): 14201428.

[1] LIU Shao-jin,FENG Xue-jiao,WANG Jun-shu,XIAO Zheng-qiang,CHENG Ping-sheng. Market Analysis and Countermeasures of Nucleic Acid Drugs in China[J]. China Biotechnology, 2021, 41(7): 99-109.
[2] DUAN Yang-yang,ZHANG Feng-ting,CHENG Jiang,SHI Jin,YANG Juan,LI Hai-ning. The Effect of SIRT2 on Apoptosis and Mitochondrial Function in Parkinson’s Disease Model Cells Induced by MPP+[J]. China Biotechnology, 2021, 41(4): 1-8.
[3] YANG Ruo-nan,XU Li,XU Ping,SU Yan. The Development Situation and Suggestions of RNA Therapy Industry[J]. China Biotechnology, 2021, 41(2/3): 162-171.
[4] TANG De-ping,XING Meng-jie,SONG Wen-tao,YAO Hui-hui,MAO Ai-hong. Advance of microRNA Therapeutics in Cancer and Other Diseases[J]. China Biotechnology, 2021, 41(11): 64-73.
[5] CHEN Xue-yan,ZHANG Na,CHEN Juan,YANG Yan-hong,ZHANG Ju-feng. Effect of Hsa-miR-411-3P on Gastric Cancer Cells and Related Mechanisms[J]. China Biotechnology, 2020, 40(4): 1-9.
[6] TANG Zhi-xiong, GOU De-ming. Research Progress on miRNA Regulation of Myogenesis[J]. China Biotechnology, 2017, 37(10): 103-110.
[7] CHEN Min, CHEN Hui, BAO Hai, HUANG Peng, WANG Yan-wei. Advances in the Research of miRNA Promoters in Plants[J]. China Biotechnology, 2016, 36(5): 125-131.
[8] LIU Yi-xuan, BIAN Zhen, MA Hong-mei. Progress and Prospect of Cancer Gene Therapy[J]. China Biotechnology, 2016, 36(5): 106-111.
[9] HU Na, LIU Qing, TANG Zhao-yong, TANG He-jing, AO Lan, ZHAO Zi-hao, FANG Liao-qiong. siRNA Inhibits the Growth and Migration of Mouse Melanoma by MMP-9 and FAK Gene[J]. China Biotechnology, 2016, 36(5): 34-39.
[10] LIANG Gao-feng, HE Xiang-feng, CHEN Bao-an. Progress in the Research of miRNA on Tumor Molecular Diagnosis and Therapy[J]. China Biotechnology, 2015, 35(9): 57-65.
[11] TANG De-ping, MAO Ai-hong, WANG Fang, ZHANG Hong, WANG Li, LIAO Shi-qi. Targeted Delivery of siRNA Mediated by Aptamer Modified Liposome[J]. China Biotechnology, 2015, 35(1): 54-60.
[12] XUE Yu-wen, LI Tie-jun, ZHOU Jia-ming, CHEN Li. The Application and Perspectives of Multi-target RNAi in the Research and Development of Gene Therapy[J]. China Biotechnology, 2015, 35(1): 75-81.
[13] QUAN Mei-yu, GUO Qiang, ZHANG Kun-shui, FANF Rui, LI Cui-lin, DU Jun. Generation of Two Mouse Melanoma Cell Lines Stable Overexpression or Silencing of Nodal and Identification of EMT Phenotype[J]. China Biotechnology, 2014, 34(3): 1-8.
[14] LI Jun-e, JIA Li-juan, YAN Peng-cheng, YAN Xue-qing, XIE Guo-yun, CHEN Yu-bao. miRDOA:A Integrated Database of MicroRNA Include Data Storage and Online Analysis[J]. China Biotechnology, 2014, 34(11): 1-8.
[15] LI Hong-yi, XI Qian-yun, ZHANG Yong-liang. Identification miRNAs That Regulate Porcine TNF-α Expression Through Targeting TNF-α UTR[J]. China Biotechnology, 2014, 34(10): 35-40.