Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (9): 57-65    DOI: 10.13523/j.cb.20150909
    
Progress in the Research of miRNA on Tumor Molecular Diagnosis and Therapy
LIANG Gao-feng1,2, HE Xiang-feng1, CHEN Bao-an1
1 Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210092, China;
2 Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471003, China
Download: HTML   PDF(490KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

miRNA are a class of endogenous single-stranded small molecule RNA within eukaryotes, about 18~26 nucleotide, which can trigger the target mRNA degradation or translational repression of target mRNA through specific complementary base pairing. miRNA dysregulation can have profound cellular consequences. In cancer, the loss of tumour-suppressive miRNAs enhances the expression of target oncogenes, whereas increased expression of oncogenic miRNAs (known as oncomirs) can repress target tumour suppressor genes. This realization has resulted in a promotion to comprehend the feasibility of targeting oncogenic miRNAs and restoring tumour-suppressive miRNAs for cancer therapy. In conclusion, with the deepening of clinical studies in miRNA,new ideas and methods are provided for molecular diagnostics and cancer therapy.



Key wordsmiRNA      Tumor      Molecular diagnosis      Therapy     
Received: 11 February 2015      Published: 25 September 2015
ZTFLH:  Q819  
Cite this article:

LIANG Gao-feng, HE Xiang-feng, CHEN Bao-an. Progress in the Research of miRNA on Tumor Molecular Diagnosis and Therapy. China Biotechnology, 2015, 35(9): 57-65.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150909     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I9/57


[1] Denli A M, Tops B J, Plasterk R A, et al. Processing of primary microRNAs by the Microprocessor complex. Nature, 2004,432(7014):231-235.

[2] Ruvkun G. Molecular biology. Glimpses of a tiny RNA world. Science, 2001,294(5543):797-799.

[3] Sokilde R, Vincent M, Moller A K, et al. Efficient Identification of miRNAs for classification of tumor origin. Journal of Molecular Diagnostics, 2014,16(1):106-115.

[4] Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 2007,9(6):654-662.

[5] Bianchi F, Nicassio F, Marzi M, et al. A serum circulating miRNA diagnostic test to identify asymptomatic high-risk individuals with early stage lung cancer. Embo Molecular Medicine, 2011,3(8):495-503.

[6] Heneghan H M, Miller N, Lowery A J, et al. Circulating microRNAs as Novel Minimally Invasive Biomarkers for Breast Cancer. Annals of Surgery, 2010,251(3):499-505.

[7] Asaga S, Kuo C, Nguyen T, et al. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clinical Chemistry, 2011,57(1):84-91.

[8] 胡俊庭, 鲍蕴文, 白艳, 等. 肺癌患者血清microRNA-21表达临床意义探讨. 中华肿瘤防治杂志, 2014,21(1):39-42. Hu J T, Bao Y W, Bai Y, et al.Serum microRNA-21 expression and its clinical significance in patients with lung cancer.Chinese Journal of Cancer Prevention and Treatment,2014,21(1):39-42.

[9] 叶敏华,叶鹏辉,张伟珠,等. 唾液与血浆微小RNA-21对早期食管癌的诊断价值. 南方医科大学学报, 2014,34(6):885-889. Ye M H, Ye P H, Zhang W Z, et al.Diagnostic values of salivary versus and plasma microRNA-21 for early esophageal cancer. Journal of Southern Medical University,2014,34(6):885-889.

[10] Huang Z, Huang D, Ni S, et al. Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer. International Journal of Cancer, 2010,127(1):118-126.

[11] Chen X, Hu Z, Wang W, et al. Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for nonsmall cell lung cancer diagnosis. International Journal of Cancer, 2012,130(7):1620-1628.

[12] Kota J, Chivukula R R, O'donnell K A, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 2009,137(6):1005-1017.

[13] Ji J, Shi J, Budhu A,et al. MicroRNA expression, survival, and response to interferon in liver cancer. New England Journal of Medicine, 2009,361(15):1437-1447.

[14] Liu R, Zhang C, Hu Z, et al. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. European Journal of Cancer, 2011,47(5):784-791.

[15] Chen Z H, Zhang G L, Li H R, et al. A panel of five circulating microRNAs as potential biomarkers for prostate cancer. Prostate, 2012,72(13):1443-1452.

[16] Zhang C, Wang C, Chen X, et al. Expression profile of microRNAs in serum: a fingerprint for esophageal squamous cell carcinoma. Clinical Chemistry, 2010,56(12):1871-1879.

[17] Porter-Gill P, Fu Y P, Kaushiva A, et al. Detection of bladder, breast and prostate cancer using serum and tissue miRNA profiling. Genome Biology, 2011,12(10):12-13.

[18] Suryawanshi S, Vlad A M, Lin H M,et al. Plasma microRNAs as novel biomarkers for endometriosis and endometriosis-associated ovarian cancer. Clinical Cancer Research, 2013,19(5):1213-1224.

[19] Zeng X, Xiang J, Wu M, et al. Circulating miR-17, miR-20a, miR-29c, and miR-223 combined as non-invasive biomarkers in nasopharyngeal carcinoma. Plos One, 2012,7(10):102-111.

[20] Costinean S, Sandhu S K, Pedersen I M,et al. Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of E mu-MiR-155 transgenic mice. Blood, 2009,114(7):1374-1382.

[21] Thai T H, Calado D P, Casola S, et al. Regulation of the germinal center response by microRNA-155. Science, 2007,316(5824):604-608.

[22] Rodriguez A, Vigorito E, Clare S,et al. Requirement of bic/microRNA-155 for normal immune function. Science, 2007,316(5824):608-611.

[23] O'Connell R M, Kahn D, Gibson W S J, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity, 2010,33(4):607-619.

[24] Medina P P, Nolde M, Slack F J. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature, 2010,467(7311):86-99.

[25] Hatley M E, Patrick D M, Garcia M R, et al. Modulation of K-Ras-dependent lung tumorigenesis by microRNA-21. Cancer Cell, 2010,18(3):282-293.

[26] Ma X, Kumar M, Choudhury S N, et al. Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(25):10144-10149.

[27] Santanam U, Zanesi N, Efanov A, et al. Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(27):12210-12215.

[28] Xiao C, Srinivasan L, Calado D P, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature Immunology, 2008,9(4):405-414.

[29] Ventura A, Young A G, Winslow M M,et al. Targeted deletion reveals essential and overlapping functions of the miR-17 similar to 92 family of miRNA clusters. Cell, 2008,132(5):875-886.

[30] Salerno E, Scaglione B J, Coffman F D, et al. Correcting miR-15a/16 genetic defect in New Zealand Black mouse model of CLL enhances drug sensitivity. Molecular Cancer Therapeutics, 2009,8(9):2684-2692.

[31] Klein U, Lia M, Crespo M, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and Its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 2010,17(1):28-40.

[32] Boldin M P, Taganov K D, Rao D S,et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. Journal of Experimental Medicine, 2011,208(6):1189-1201.

[33] Kumar M S, Pester R E, Chen C Y,et al. Dicer1 functions as a haploinsufficient tumor suppressor. Genes & Development, 2009,23(23):2700-2704.

[34] Lambertz I, Nittner D, Mestdagh P, et al. Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo. Cell Death and Differentiation, 2010,17(4):633-641.

[35] Roush S, Slack F J. The let-7 family of microRNAs. Trends in Cell Biology, 2008,18(10):505-516.

[36] Trang P, Wiggins J F, Daige C L, et al. Systemic delivery of tumor suppressor microrna mimics using a neutral lipid emulsion inhibits lung tumors in mice. Molecular Therapy, 2011, 19(6): 1116-1122.

[37] Trang P, Medina P P, Wiggins J F,et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene, 2010,29(11):1580-1587.

[38] Lee S T, Chu K, Oh H J, et al. Let-7 microRNA inhibits the proliferation of human glioblastoma cells. Journal of Neuro-Oncology, 2011,102(1):19-24.

[39] Kent O A, Chivukula R R, Mullendore M, et al. Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes & Development, 2010,24(24):2754-2759.

[40] Hermeking H. The miR-34 family in cancer and apoptosis. Cell Death and Differentiation, 2010,17(2):193-199.

[41] Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nature Reviews Cancer, 2009,9(10):701-713.

[42] Misso G, Di Martino M T, De Rosa G, et al. Mir-34: A new weapon against cancer. Molecular Therapy-Nucleic Acids, 2014, 3(3): 195-206.

[43] Lanford R E, Hildebrandt-Eriksen E S, Petri A, et al. Therapeutic silencing of microrna-122 in primates with chronic hepatitis C virus infection. Science, 2010, 327(5962): 198-201.

[44] Su J, Baigude H, Mccarroll J, et al. Silencing microrna by interfering nanoparticles in mice. Nucleic Acids Research, 2011, 39(6):194-203.

[45] Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of micrornas in vivo with 'Antagomirs'. Nature, 2005, 438(7068): 685-689.

[46] Ma L, Reinhardt F, Pan E, et al. Therapeutic silencing of mir-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotechnology, 2010, 28(4): 341-357.

[47] Jeon H M, Sohn Y W, Oh S Y, et al. Id4 imparts chemoresistance and cancer stemness to glioma cells by derepressing mir-9*-mediated suppression of Sox2. Cancer Research, 2011, 71(9): 3410-3421.

[48] Cittelly D M, Das P M, Salvo V A, et al. Oncogenic Her2 delta 16 suppresses mir-15a/16 and deregulates Bcl-2 to promote endocrine resistance of breast tumors. Carcinogenesis, 2010, 31(12): 2049-2057.

[49] Cittelly D M, Das P M, Spoelstra N S, et al. Downregulation of mir-342 is associated with tamoxifen resistant breast tumors. Molecular Cancer, 2010, 9(4): 317-326.

[50] Miller T E, Ghoshal K, Ramaswamy B, et al. Microrna-221/222 confers tamoxifen resistance in breast cancer by targeting p27kip1. Journal of Biological Chemistry, 2008, 283(44): 29897-29903.

[51] Cao M, Seike M, Soeno C, et al. Mir-23a regulates Tgf-beta-induced epithelial-mesenchymal transition by targeting E-cadherin in lung cancer cells. International Journal of Oncology, 2012, 41(3): 869-875.

[52] Han S Y, Zhao M B, Zhuang G B, et al. Marsdenia tenacissima extract restored gefitinib sensitivity in resistant non-small cell lung cancer cells. Lung Cancer, 2012, 75(1): 30-37.

[53] Kastl L, Brown ISchofield A C. Mirna-34a Is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Research and Treatment, 2012, 131(2): 445-454.

[54] Sebio A, Pare L, Paez D, et al. The Lcs6 polymorphism in the binding site of let-7 microrna to the kras 3'-untranslated region: its role in the efficacy of anti-egfr-based therapy in metastatic colorectal cancer patients. Pharmacogenetics and Genomics, 2013, 23(3): 142-147.

[55] Chen F, Zhu H H, Zhou L F,et al. Inhibition of c-FLI Pexpression by miR-512-3 Pcontributes to Taxol-induced apoptosis in hepatocellular carcinoma cells. Oncology Reports, 2010,23(5):1457-1462.

[56] Shaham L, Binder V, Gefen N,et al. MiR-125 in normal and malignant hematopoiesis. Leukemia, 2012,26(9):2011-2018.

[57] Holleman A, Chung I, Olsen R R,et al. miR-135a contributes to paclitaxel resistance in tumor cells both in vitro and in vivo. Oncogene, 2011,30(43):4386-4398.

[58] Menendez P, Villarejo P, Padilla D,et al. Implications of the histological determination of microRNAs in the screening, diagnosis and prognosis of colorectal cancer. Journal of Surgical Oncology, 2013,108(1):70-73.

[59] Valeri N, Gasparini P, Braconi C, et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proceedings of the National Academy of Sciences of the United States of America, 2010,107(49):21098-21103.

[60] Hong L, Han Y, Zhang Y,et al. MicroRNA-21: a therapeutic target for reversing drug resistance in cancer. Expert Opinion on Therapeutic Targets, 2013,17(9):1073-1080.

[61] 方楚玲,郭琳琅. miRNA对肺癌化疗耐药调控研究进展. 中华肿瘤防治杂志, 2014(1):72-76. Fang C L, Guo L L.Research situation of miRNAs in regulating chemotherapy resistance of lung cancer. Chinese Journal of Cancer Prevention and Treatment, 2014(1):72-76.

[62] Connelly C M, Uprety R, Hemphill J, et al. Spatiotemporal control of microRNA function using light-activated antagomirs. Molecular Biosystems, 2012,8(11):2987-2993.

[63] Tiram G, Scomparin A, Ofek P, et al. Interfering cancer with polymeric siRNA nanomedicines. Journal of Biomedical Nanotechnology, 2014,10(1):50-66.

[64] Esquela-Kerscher A, Trang P, Wiggins J F, et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle, 2008,7(6):759-764.

[65] Pramanik D, Campbell N R, Karikari C, et al. Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Molecular Cancer Therapeutics, 2011,10(8):1470-1480.

[66] Liu C, Kelnar K, Liu B, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nature Medicine, 2011,17(2):211-U105.

[67] Zhang Y, Wang Z, Gemeinhart R A. Progress in microRNA delivery. Journal of Controlled Release, 2013,172(3):962-974.

[68] Arroyo J.D, Chevillet J R, Kroh E M, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(12):5003-5008.

[69] Grimm D, Wang L, Lee J S, et al. Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. Journal of Clinical Investigation, 2010,120(9):3106-3119.

[1] ZHAO Meng-ze,LI Feng-zhi,WANG Peng-yin,LI Jian,XU Han-mei. Research Progress of Dual-target Blocking Therapy of PD-L1 and VEGF[J]. China Biotechnology, 2021, 41(9): 71-77.
[2] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[3] LV Hui-zhong,ZHAO Chen-chen,ZHU Lian,XU Na. Progress of Using Exosome for Drug Targeted Delivery in Tumor Therapy[J]. China Biotechnology, 2021, 41(5): 79-86.
[4] YUAN Bo,WANG Jie-wen,KANG Guang-bo,HUANG He. Research Progress and Application of Bispecific Nanobody[J]. China Biotechnology, 2021, 41(2/3): 78-88.
[5] HU Sheng-tao,ZHANG Er-bing,LIN Ye,ZHANG Feng,HUANG Dan,SONG Hou-pan,LIU Bin,CAI Xiong. Research Advances on the Therapy of Rheumatoid Arthritis with the Nanotechnology Based on Transdermal Drug Delivery System[J]. China Biotechnology, 2021, 41(2/3): 98-106.
[6] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[7] HAN Xue-yi,LI Yi-fan,LU Yue-da,XIONG Guo-liang,YU Chang-yuan. Preparation of Porphyrin Metal-organic Framework with Autophagy Inhibitory Effect and Its Photodynamic Cancer Treatment[J]. China Biotechnology, 2021, 41(11): 48-54.
[8] TANG De-ping,XING Meng-jie,SONG Wen-tao,YAO Hui-hui,MAO Ai-hong. Advance of microRNA Therapeutics in Cancer and Other Diseases[J]. China Biotechnology, 2021, 41(11): 64-73.
[9] WU You,XIN Lin. New Drug Delivery System: Delivery of Exosomes as Drug Carriers[J]. China Biotechnology, 2020, 40(9): 28-35.
[10] YANG Wei,SONG Fang-xiang,WANG Shuai,ZHANG Li,WANG Hong-xia,LI Yan. Preparation and Application of Janus Nanoparticles in Drug Delivery System[J]. China Biotechnology, 2020, 40(7): 70-81.
[11] LIN Shi-xin,LIU Dong-chen,LEI Yun,XIONG Sheng,XIE Qiu-ling. Screening, Expression and Specificity Detection of Anti-TNF-α Nanobody[J]. China Biotechnology, 2020, 40(7): 15-21.
[12] ZHANG Bao-hui,XIONG Hua-long,ZHANG Tian-ying,YUAN Quan. Research Progress on Vesicular Stomatitis Virus-based Oncolytic Virotherapy[J]. China Biotechnology, 2020, 40(6): 53-62.
[13] MAO Kai-yun,ZHAO Ruo-chun,WANG Yue,FAN Yue-lei,JIANG Hong-bo. Analysis on the Development Trend of CMO/CDMOS Industry in Global Cell Therapy[J]. China Biotechnology, 2020, 40(6): 106-112.
[14] TONG Mei,CHENG Yong-qing,LIU Jin-yi,XU Chen. Construction of a Strain for Promoting Production of Small Molecule Antibodies in Periplasmic Space of Escherichia coli[J]. China Biotechnology, 2020, 40(5): 48-56.
[15] DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells[J]. China Biotechnology, 2020, 40(4): 69-77.