Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (7): 99-109    DOI: 10.13523/j.cb.2103061
    
Market Analysis and Countermeasures of Nucleic Acid Drugs in China
LIU Shao-jin(),FENG Xue-jiao,WANG Jun-shu,XIAO Zheng-qiang,CHENG Ping-sheng
Institute of Science and Technology Strategy, Jiangxi Academy of Sciences, Nanchang 330096,China
Download: HTML   PDF(1227KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In recent years, due to the dual characteristics of genetic modification and traditional drugs, nucleic acid drugs have gradually attracted tremendous attention in the field of precision biomedicine and disease treatment. In order to further promote the innovation and development of nucleic acid drug industry of China, a combination of quantitative analysis and qualitative analysis have been used to analyze the situation of nucleic acid drugs of approval/authorization, market and research domestically and abroad. The results showed the global R&D status and industry development trends of four major categories of nucleic acid drugs: ASO, siRNA, RNA aptamer and mRNA. Besides, policies and measures to support the innovation and development of nucleic acid drugs in China, and the main direction of future technology and application potential have been sorted out and analyzed. Facing the urgent domestic demand for gene therapy and the severe situation in the innovation of nucleic acid drugs, countermeasures and suggestions have been put forward to promote innovation at the source, improve the mechanism for transfer and transformation of results, and create a good competitive environment.



Key wordsNucleic acid drug      ASO drugs      siRNA drugs      RNA aptamer drugs      mRNA drugs     
Received: 23 March 2021      Published: 03 August 2021
ZTFLH:  Q819  
Corresponding Authors: Shao-jin LIU     E-mail: liusj9112@126.com
Cite this article:

LIU Shao-jin,FENG Xue-jiao,WANG Jun-shu,XIAO Zheng-qiang,CHENG Ping-sheng. Market Analysis and Countermeasures of Nucleic Acid Drugs in China. China Biotechnology, 2021, 41(7): 99-109.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2103061     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I7/99

通用名 中文名称 商品名称 公司名 靶点 适应症 获批年份
Fomivirsen sodium 福米韦生钠 Vitravene Ionis Novartis CMV UL123 巨细胞病毒性视网膜炎 1998
Mipomersen sodium 米泊美生钠 Kynamro Ionis Genzyme
Kastle
APOB 纯合子家族性高胆固醇血症
(HoFH)
2013
Eteplirsen 依特立生 Exondys 51 Sarepta DMD exon 51 杜氏肌营养不良症(DMD) 2016
Nusinersen sodium 诺西那生钠 Spinraza Ionis and Biogen SMN2 exon 7 脊髓性肌萎缩症(SMA) 2016
Inotersen - Tegsedi Akcea (Ionis) TTR 成人遗传性转甲状腺素蛋白
淀粉样变性(hATTR)
2018
Golodirsen - Vyondys 53 Sarepta DMD exon 53 杜氏肌营养不良症(DMD) 2019
Volanesorsen - Waylivra Ionis and Akcea APOC3 家族性高乳糜微粒血症(FCS) 2019
Defibrotide sodium 去纤甘钠/
脱纤肽钠
Defitelio Jazz - 严重肝静脉闭塞病(sVOD) 2013
Patisiran 帕替斯垣 Onpattro Alnylam TTR-FAP mRNA 成人遗传性转甲状腺素蛋白
淀粉样变性(hATTR)
2018
Givosiran 吉伏司兰 Givlaari Alnylam ALAS1 成人急性肝卟啉症(AHP) 2019
Lumasiran - Oxlumo Alnylam HAO1 mRNA 原发性高草酸尿症(I型) 2020
Inclisiran - Leqvio Novartis and
Alnylam
PCSK9 杂合子家族性高胆固醇血症 2020
Pegaptanib sodium 哌加他尼钠 Macugen Valeant VEGF-165 湿性年龄相关性黄斑变性
(wAMD)
2004
Table1 Global situation of nucleic acid drugs approved
名称 公司名 保护效力
(95% CI)
获授权
年份
BNT162b2 Pfizer, BioNTech 95.0% 2020
mRNA-1273 Moderna 94.1% 2020
Table2 Global situation of mRNA vaccine authorized
Fig.1 Market size and forecast of global nucleic acid drug between 2018 and 2024 Source: Evaluate pharma/ Boston consulting group/ China galaxy securities
Fig.2 Market size and forecast of Patisiran, Nusinersen and Eteplirsen between 2017 and 2020 Source: Cortellis/ Datamonitor healthcare/ China galaxy securities
药物名称 靶点 适应症 研发进展
Macugen(Pegaptanib) VEGF165 视网膜静脉阻塞等 临床Ⅲ期
Zimura C5 (Complement component 5) 年龄相关性黄斑变性 临床Ⅲ期
REG1(RB006 plus RB007) Coagulation factor IXa 冠状动脉疾病 临床II期
NOX-A12 Chemokine (C-X-C motif) ligand 12 orstromal-
derived- factor 1, SDF-1
干细胞移植 临床II期
NOX-H94 Hepcidin 慢性病贫血 临床II期
NOX-E36 Chemokine (cysteine cysteinemotif) ligand 2 II型糖尿病 临床II期
ARC19499 Tissue factor pathway inhibitor (TFPI) 血友病 临床I期
Table 3 Clinical trial data of global RNA aptamer in the world until December 2020
药物类型 药物名称 适应症 研发进展
miRNA Miravirsen 丙型肝炎、慢性丙型肝炎 临床Ⅱ期
miRNA RG-012 遗传性肾炎 临床Ⅱ期
miRNA RGLS4326 常染色体显性多囊肾 临床I期
miRNA MRG-106 蕈样真菌病、慢性淋巴细胞性白血病、
弥漫性大B细胞淋巴瘤、淋巴瘤
临床Ⅱ期
miRNA MRG-107 肌萎缩侧索硬化症、心脏病、视网膜疾病 临床前研究
miRNA MRG-110 外伤 临床I期
miRNA MRG-110 瘢痕疙瘩、纤维变性 临床Ⅱ期
miRNA MesomiR-1 恶性胸膜间皮瘤、非小细胞肺癌 临床I期
sgRNA PD-1 knockout CAR-T cells 间皮素阳性多发性实体瘤 临床I期
sgRNA Dual specificity CD19 and CD20 or CD22 CAR-T cells B细胞淋巴瘤、B细胞白血病 临床Ⅰ/II期
sgRNA Universal CD19-sepcific CAR- T cells B细胞淋巴瘤、B细胞白血病 临床Ⅰ/II期
sgRNA CD34+ modified autologous hHSPCs 输血依赖性β地中海贫血、镰状细胞病 临床Ⅰ/II期
sgRNA PD-1 knockout autologous T cells 食管癌 临床Ⅱ期
sgRNA PD-1 knockout autologous T cells 非小细胞肺癌 临床I期
sgRNA PD-1 knockout autologous T cells 胃癌、鼻咽癌、T细胞淋巴瘤、成人霍奇
金淋巴瘤、弥漫性大B细胞淋巴瘤
临床Ⅰ/II期
sgRNA Surface CD7 knockout CD7- specific CAR-T cells T细胞急性淋巴细胞白血病、T细胞急性
淋巴细胞淋巴瘤、T细胞非霍奇金淋巴瘤
临床I期
sgRNA Disruption of HPV16 and HPV18 E6/E7 DNA 人乳头瘤病毒(HPV)相关恶性肿瘤 临床I期
sgRNA NY-ESO-1 redirected PD-1 knockout autologous T cells 多发性骨髓瘤、黑色素瘤、滑膜肉瘤、
黏液样/圆细胞型脂肪肉瘤
临床I期
mRNA BNT111 晚期黑色素瘤 临床I期
mRNA BNT112 前列腺癌 临床I期
mRNA BNT131 实体瘤 临床I期
mRNA CV8102 皮肤黑色素瘤 临床I期
mRNA CV9202 非小细胞肺癌 临床I期
Table 4 Clinical trial data of other nucleic acid drugs in the world until December 2020
适应症 潜在患者
/万人
渗透率
杜氏肌营养不良症 3 500 5%
纯合子家族性高胆固醇血症 233 5%
脊髓性肌肉萎缩症 77 5%
成人遗传性转甲状腺素蛋白 100 5%
淀粉样变性(hATTR)
Beta-地中海贫血 62 536 2%
急性肝卟啉症 300 5%
HSCT 后肝静脉闭塞VOD NA -
并伴有肾或肺异常
潜在患者总数 66 746 -
Table 5 Market penetration of nucleic acid drugs in the field of rare diseases in China
药物名称 适应症 研发进展 牵头公司
STP705 非黑色素瘤皮肤癌 临床Ⅱ期 圣诺生物医药技术(苏州)有限公司
STP705 增生性瘢痕 临床Ⅱ期 圣诺生物医药技术(苏州)有限公司
SR062 Ⅱ型糖尿病 临床Ⅱ期 苏州瑞博生物技术股份有限公司
SR063 高危转移性去势抵抗性前列腺癌 临床Ⅱ期 苏州瑞博生物技术股份有限公司
SR061 非动脉炎性前部缺血性视神经病变 临床Ⅲ期 苏州瑞博生物技术股份有限公司
SR061 青光眼 临床Ⅱ期 苏州瑞博生物技术股份有限公司
WGI-0201 肾细胞癌 临床Ⅱ期 浙江海昶生物医药技术有限公司
ARCoV 新型冠状病毒肺炎 临床Ⅱ期 苏州艾博生物科技有限公司
- 肝炎 临床Ⅱ期 百奥迈科生物技术有限公司
- 皮肤高色素病 临床Ⅱ期 百奥迈科生物技术有限公司
Table6 Clinical trial data of nucleic acid drug in China until December 2020
[1]   冯琦. 核酸药物的研究现状与展望. 中国生化药物杂志, 1997, 17(3):156-159.
[1]   Feng Q. Progress and prospects of nucleic acid drugs. Chinese Journal of Biochemical Pharmaceutics, 1997, 17(3):156-159.
[2]   Opalinska J B, Gewirtz A M. Nucleic-acid therapeutics: basic principles and recent applications. Nature Reviews Drug Discovery, 2002, 1(7):503-514.
pmid: 12120257
[3]   Cech T R, Steitz J A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell, 2014, 157(1):77-94.
doi: 10.1016/j.cell.2014.03.008
[4]   Lächelt U, Wagner E. Nucleic acid therapeutics using polyplexes: a journey of 50 years (and beyond). Chemical Reviews, 2015, 115(19):11043-11078.
doi: 10.1021/cr5006793 pmid: 25872804
[5]   王均, 王兰, 吕家臻, 等. 上市核酸药物的疗效分析和研究进展. 中国新药杂志, 2019, 28(18):2217-2224.
[5]   Wang J, Wang L, Lv J Z, et al. Progress in efficacy analysis and development of listed nucleic acid drugs. Chinese Journal of New Drugs, 2019, 28(18):2217-2224.
[6]   Moreno P M D, Pêgo A P. Therapeutic antisense oligonucleotides against cancer: hurdling to the clinic. Frontiers in Chemistry, 2014, 2:87.
doi: 10.3389/fchem.2014.00087 pmid: 25353019
[7]   Sundaram P, Kurniawan H, Byrne M E, et al. Therapeutic RNA aptamers in clinical trials. European Journal of Pharmaceutical Sciences, 2013, 48(1-2):259-271.
doi: 10.1016/j.ejps.2012.10.014 pmid: 23142634
[8]   Digenio A, Dunbar R L, Alexander V J, et al. Antisense-mediated lowering of plasma apolipoprotein C-III by volanesorsen improves dyslipidemia and insulin sensitivity in type 2 diabetes. Diabetes Care, 2016, 39(8):1408-1415.
doi: 10.2337/dc16-0126 pmid: 27271183
[9]   Wong E, Goldberg T. AMipomersen (kynamro): a novel antisense oligonucleotide inhibitor for the management of homozygous familial hypercholesterolemia. P & T: A Peer-Reviewed Journal for Formulary Management, 2014, 39(2):119-122.
[10]   Mendell J R, Goemans N, Lowes L P, et al. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Annals of Neurology, 2016, 79(2):257-271.
doi: 10.1002/ana.24555 pmid: 26573217
[11]   Stein C A, Castanotto D. FDA-approved oligonucleotide therapies in 2017. Molecular Therapy, 2017, 25(5):1069-1075.
doi: 10.1016/j.ymthe.2017.03.023
[12]   Benson M D, Waddington-Cruz M, Berk J L, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. The New England Journal of Medicine, 2018, 379(1):22-31.
doi: 10.1056/NEJMoa1716793
[13]   Heo Y A. Golodirsen: first approval. Drugs, 2020, 80(3):329-333.
doi: 10.1007/s40265-020-01267-2
[14]   Paik J, Duggan S. Volanesorsen: first global approval. Drugs, 2019, 79(12):1349-1354.
doi: 10.1007/s40265-019-01168-z
[15]   Richardson P G, Riches M L, Kernan N A, et al. Phase 3 trial of defibrotide for the treatment of severe veno-occlusive disease and multi-organ failure. Blood, 2016, 127(13):1656-1665.
doi: 10.1182/blood-2015-10-676924 pmid: 26825712
[16]   Adams D, O’Riordan A, Gonzalez-Duarte W D, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. The New England Journal of Medicine, 2018, 379(1):11-21.
doi: 10.1056/NEJMoa1716153
[17]   Balwani M, Sardh E, Ventura P, et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent Porphyria. The New England Journal of Medicine, 2020, 382(24):2289-2301.
doi: 10.1056/NEJMoa1913147
[18]   Scott L J, Keam S J. Lumasiran: first approval. Drugs, 2021, 81(2):277-282.
doi: 10.1007/s40265-020-01463-0
[19]   Raal F J, Kallend D, Ray K K, et al. Inclisiran for the treatment of heterozygous familial hypercholesterolemia. The New England Journal of Medicine, 2020, 382(16):1520-1530.
doi: 10.1056/NEJMoa1913805
[20]   Polack F P, Thomas S J, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. The New England Journal of Medicine, 2020, 383(27):2603-2615.
doi: 10.1056/NEJMoa2034577
[21]   Corbett K S, Flynn B, Foulds K E, et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. The New England Journal of Medicine, 2020, 383(16):1544-1555.
doi: 10.1056/NEJMoa2024671
[22]   Wang F, Zuroske T, Watts J K. RNA therapeutics on the rise. Nature Reviews Drug Discovery, 2020, 19(7):441-442.
doi: 10.1038/d41573-020-00078-0
[23]   杨若南, 许丽, 徐萍, 等. RNA疗法产业发展态势分析及建议. 中国生物工程杂志, 2021, 41(Z1):162-171.
[23]   Yang R N, Xu L, Xu P, et al. The development situation and suggestions of RNA therapy industry. China Biotechnology, 2021, 41(Z1):162-171.
[24]   Bennett C F. Therapeutic antisense oligonucleotides are coming of age. Annual Review of Medicine, 2019, 70:307-321.
doi: 10.1146/annurev-med-041217-010829 pmid: 30691367
[25]   Inoue H, Hayase Y, Imura A, et al. Synthesis and hybridization studies on two complementary nona (2'-O-methyl) ribonucleotides. Nucleic Acids Research, 1987, 15(15):6131-6148.
pmid: 3627981
[26]   Fucini R V, Haringsma H J, Deng P, et al. Adenosine modification may be preferred for reducing siRNA immune stimulation. Nucleic Acid Therapeutics, 2012, 22(3):205-210.
doi: 10.1089/nat.2011.0334
[27]   Summerton J, Weller D. Morpholino antisense oligomers: design, preparation, and properties. Antisense & Nucleic Acid Drug Development, 1997, 7(3):187-195.
[28]   Christensen U, Jacobsen N, Rajwanshi V K, et al. Stopped-flow kinetics of locked nucleic acid (LNA)-oligonucleotide duplex formation: studies of LNA-DNA and DNA-DNA interactions. Biochemical Journal, 2001, 354(3):481-484.
doi: 10.1042/bj3540481
[29]   Karikó K, Muramatsu H, Welsh F A, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Molecular Therapy, 2008, 16(11):1833-1840.
doi: 10.1038/mt.2008.200
[30]   Kormann M S D, Hasenpusch G, Aneja M K, et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nature Biotechnology, 2011, 29(2):154-157.
doi: 10.1038/nbt.1733
[31]   Jayaraman M, Ansell S M, Mui B L, et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angewandte Chemie (International Edition in English), 2012, 51(34):8529-8533.
[32]   Davis M E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Molecular Pharmaceutics, 2009, 6(3):659-668.
doi: 10.1021/mp900015y pmid: 19267452
[33]   Rozema D B, Lewis D L, Wakefield D H, et al. Dynamic polyconjugates for targeted in vivo delivery of siRNA to hepatocytes. PNAS, 2007, 104(32):12982-12987.
pmid: 17652171
[34]   Khorev O, Stokmaier D, Schwardt O, et al. Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor. Bioorganic & Medicinal Chemistry, 2008, 16(9):5216-5231.
doi: 10.1016/j.bmc.2008.03.017
[35]   Hu B, Zhong L P, Weng Y H, et al. Therapeutic siRNA: state of the art. Signal Transduction and Targeted Therapy, 2020, 5(1):1-25.
doi: 10.1038/s41392-019-0089-y
[36]   Kranz L M, Diken M, Haas H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature, 2016, 534(7607):396-401.
doi: 10.1038/nature18300
[37]   Rezaee M, Oskuee R K, Nassirli H, et al. Progress in the development of lipopolyplexes as efficient non-viral gene delivery systems. Journal of Controlled Release, 2016, 236:1-14.
doi: 10.1016/j.jconrel.2016.06.023 pmid: 27317365
[38]   Weng Y H, Xiao H H, Zhang J C, et al. RNAi therapeutic and its innovative biotechnological evolution. Biotechnology Advances, 2019, 37(5):801-825.
doi: 10.1016/j.biotechadv.2019.04.012
[39]   Ann Ran F, Hsu P D, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 2013, 8(11):2281-2308.
doi: 10.1038/nprot.2013.143 pmid: 24157548
[40]   国家卫生健康委. 罕见病诊疗指南(2019年版).[2021-02-03]. http://www.nhc.gov.cn/yzygj/s7659/201902/61d06b4916c348e0810ce1fceb844333.shtml .
[40]   National Health Commission of the People’s Republic of China. Guidelines for diagnosis and treatment of rare diseases (2019 Edition). [2021-02-03]. http://www.nhc.gov.cn/yzygj/s7659/201902/61d06b4916c348e0810ce1fceb844333.shtml .
[41]   谢雨礼. RNA药物的未来发展方向. 张江科技评论, 2020(3):50.
[41]   Xie Y L. The future development of RNA drugs. Zhangjiang Technology Review, 2020(3):50.
[1] . [J]. China Biotechnology, 2021, 41(12): 1-3.
[2] WU Han-rong,WANG Ying,HUANG Ying-ming,LI Dong-xue,LI Zhi-fei,FANG Zi-han,FAN Lin. Promote the Innovation and Transformation of Biotechnology by Base Platform[J]. China Biotechnology, 2021, 41(12): 141-147.
[3] YIN Ze-chao,WANG Xiao-fang,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Advances on Genetic Research and Mechanism Analysis on Maize Resistance to Ear Rot[J]. China Biotechnology, 2021, 41(12): 103-115.
[4] LENG Yan,SUN Kang-tai,LIU Qian-qian,PU A-qing,LI Xiang,WAN Xiang-yuan,WEI Xun. Trends of Global Gene-edited Crops Supervision[J]. China Biotechnology, 2021, 41(12): 24-29.
[5] HE Wei,ZHU Lei,LIU Xin-ze,AN Xue-li,WAN Xiang-yuan. Research Progress on Maize Genetic Transformation and Commercial Development of Transgenic Maize[J]. China Biotechnology, 2021, 41(12): 13-23.
[6] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[7] YIN Fang-bing,WANG Cheng,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Dissecting Genetic Architecture and Formation Mechanism of Maize Ear Traits[J]. China Biotechnology, 2021, 41(12): 30-46.
[8] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[9] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[10] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[11] WANG Yan-bo,WEI Jia,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize[J]. China Biotechnology, 2021, 41(12): 88-102.
[12] MAO Kai-yun,LI Rong,LI Dan-dan,ZHAO Ruo-chun,FAN Yue-lei,JIANG Hong-bo. Analysis of the Current Status of Global Bispecific Antibody Development[J]. China Biotechnology, 2021, 41(11): 110-118.
[13] WU Han-rong,WANG Ying,YANG Li,GE Yao,FAN Ling. Current Situation and Development Suggestions of China’s Biotechnology Base Platform[J]. China Biotechnology, 2021, 41(11): 119-123.
[14] LIU Tian-yi,FENG Hui,SALSABEEL Yousuf,XIE Ling-li,MIAO Xiang-yang. Research Progress of lncRNA in Animal Fat Deposition[J]. China Biotechnology, 2021, 41(11): 82-88.
[15] XUE Zhi-yong,DAI Hong-sheng,ZHANG Xian-yuan,SUN Yan-ying,HUANG Zhi-wei. Effects of Vitreoscilla Hemoglobin Gene on Growth and Intracellular Oxidation State of Saccharomyces cerevisiae[J]. China Biotechnology, 2021, 41(11): 32-39.