Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (1): 75-81    DOI: 10.13523/j.cb.20150111
    
The Application and Perspectives of Multi-target RNAi in the Research and Development of Gene Therapy
XUE Yu-wen1, LI Tie-jun1,2, ZHOU Jia-ming1, CHEN Li1
1. Department of Pathological Anatomy, Nantong University, Nantong 22601, China;
2. Small RNA Technology and Application Institute, Nantong University, Nantong 226016, China
Download: HTML   PDF(667KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The expression of target genes can be inhibited by RNA interference (RNAi) specificity via post-transcriptional gene silencing (PTGS) effects. RNAi silencing mechanism with efficiency, specificity and stability allows it to become an important tool in biomedical field. The focus is on the characteristics of RNAi technology and recent development in RNAi-based therapeutics, in particular structural modifications and designs for multi-target siRNAs were reviewed. It is illustrated that multi-target based siRNA therapeutics opens up a new therapeutic strategy and may help to improve the effectiveness of treatment. However, there are still some problems and challenges needing further researches for its widely use in clinical treatments.



Key wordsMulti-target      Small interfering      RNA (siRNA)      RNA interference (RNAi)      Modification Gene therapy     
Received: 30 October 2014      Published: 25 January 2015
ZTFLH:  R459.9  
Cite this article:

XUE Yu-wen, LI Tie-jun, ZHOU Jia-ming, CHEN Li. The Application and Perspectives of Multi-target RNAi in the Research and Development of Gene Therapy. China Biotechnology, 2015, 35(1): 75-81.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150111     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I1/75


[1] Wu J, Huang W, He Z. Dendrimers as carriers for siRNA delivery and gene silencing: a review. Scientific World Journal, 2013(2013):630 654.

[2] Snøve O Jr, Rossi J J. Expressing short hairpin RNAs in vivo. Nat Methods, 2006, 3(9):689-695.

[3] Czauderna F, Fechtner M, Dames S,et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res, 2003, 31(11):2705-2716.

[4] Ge Q, Ilves H, Dallas A, et al. Minimal-length short hairpin RNAs: the relationship of structure and RNAi activity. RNA, 2010, 16(1):106-117.

[5] Seo M, Lee S, Kim J H, et al. RNAi-based functional selection identifies novel cell migration determinants dependent on PI3K and AKT pathways. Nat Commun, 2014,5:5217.

[6] Abe N, Abe H, Ito Y. Dumbbell-shaped nanocircular RNAs for RNA interference. J Am Chem Soc, 2007, 129(49):15108-15109.

[7] Sørensen D R, Sioud M. Systemic delivery of synthetic siRNAs. Methods Mol Biol, 2010, 629:87-91.

[8] Kaiser P K, Symons R C, Shah SM, et al. RNAi-based treatment for neovascular age-related macular degeneration by Sirna-027. Am J Ophthalmol, 2010, 150(1):33-39.

[9] Heidel J D, Yu Z, Liu J Y, et al. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA. Proc Natl Acad Sci U S A, 2007, 104(14):5715-5721.

[10] Leachman S A, Hickerson R P, Schwartz M E, et al. First-in-human mutation-targeted siRNA phase Ib trial of an inherited skin disorder. Mol Ther, 2010, 18(2):442-446.

[11] Burnett J C, Rossi J J, Tiemann K. Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J, 2011, 6(9):1130-1146.

[12] Zimmermann T S, Lee A C, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature, 2006, 441(7089):111-114.

[13] Davis M E, Zuckerman J E, Choi C H, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 2010, 464(7291):1067-1070.

[14] Efferth T, Koch E. Complex interactions between phytochemicals. the multi-target therapeutic concept of phytotherapy. Curr Drug Targets, 2011, 12(1):122-132.

[15] Lahoute C, Herbin O, Mallat Z, et al. Adaptive immunity in atherosclerosis: mechanisms and future therapeutic targets. Nat Rev Cardiol, 2011, 8(6):348-358.

[16] Lu J J, Pan W, Hu Y J, et al. Multi-target drugs: the trend of drug research and development. PLoS One, 2012, 7(6):e40262.

[17] Maes M, Fiar Z, Medina M, et al. New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology, 2012, 20(3):127-150.

[18] Flight M H. Neurodegenerative diseases: new kinase targets for Alzheimer's disease. Nat Rev Drug Discov, 2013, 12(10):739.

[19] Ji J, Wernli M, Klimkait T, et al. Enhanced gene silencing by the application of multiple specific small interfering RNAs. FEBS Lett, 2003, 552(2-3):247-252.

[20] Menendez J A, Vellon L, Mehmi I, et al. Inhibition of fatty acid synthase (FAS) suppresses HER2/neu (erbB-2) oncogene overexpression in cancer cells. Proc Natl Acad Sci U S A, 2004, 101(29):10715-10720.

[21] Tai W, Qin B, Cheng K. Inhibition of breast cancer cell growth and invasiveness by dual silencing of HER-2 and VEGF. Mol Pharm, 2010, 7(2):543-556.

[22] 汤禾静, 唐照勇, 刘隆兴,等. siRNA联合沉默MMP9和FAK基因对小鼠黑色素瘤高转移细胞B16F10体外侵袭和迁移的影响. 中国生物工程杂志, 2014, 34(9):40-47. Tang H J, Tang Z Y, Liu L X, et al. Effect of siRNA combined silencing MMP-9 and FAK on invasion and migration of mouse melanoma highly metastatic cells B16F10 in vitro. China Biotechnology, 2014, 34(9):40-47.

[23] Anderson J, Banerjea A, Akkina R. Bispecific short hairpin siRNA constructs targeted to CD4, CXCR4, and CCR5 confer HIV-1 resistance. Oligonucleotides, 2003, 13(5):303-312.

[24] Gondi C S, Lakka S S, Dinh D H, et al. RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene, 2004, 23(52):8486-8496.

[25] Kargiotis O, Chetty C, Gogineni V, et al. uPA/uPAR downregulation inhibits radiation-induced migration, invasion and angiogenesis in IOMM-Lee meningioma cells and decreases tumor growth in vivo. Int J Oncol, 2008, 33(5):937-947.

[26] Kunigal S, Lakka S S, Gondi C S, et al. RNAi-mediated downregulation of urokinase plasminogen activator receptor and matrix metalloprotease-9 in human breast cancer cells results in decreased tumor invasion, angiogenesis and growth. Int J Cancer, 2007, 121(10):2307-2316.

[27] Rice R R, Muirhead A N, Harrison B T, et al. Simple, robust strategies for generating DNA-directed RNA interference constructs. Methods Enzymol, 2005, 392:405-419.

[28] Akashi H, Miyagishi M, Yokota T, et al. Escape from the interferon response associated with RNA interference using vectors that encode long modified hairpin-RNA. Mol Biosyst, 2005, 1(5-6):382-390.

[29] Liu Y P, Haasnoot J, Berkhout B. Design of extended short hairpin RNAs for HIV-1 inhibition. Nucleic Acids Res, 2007, 35(17):5683-5693.

[30] Sano M, Li H, Nakanishi M, et al. Expression of long anti-HIV-1 hairpin RNAs for the generation of multiple siRNAs: advantages and limitations. Mol Ther, 2008, 16(1):170-177.

[31] Lee S H, Mok H, Jo S, et al. Dual gene targeted multimeric siRNA for combinatorial gene silencing. Biomaterials, 2011, 32(9):2359-2368.

[32] Frieden M, Aviñó A, Tarrasón G, et al. Synthesis of oligonucleotide-peptide conjugates carrying the c-myc peptide epitope as recognition system. Chem Biodivers, 2004, 1(6):930-938.

[33] Aviñó A, Ocampo S M, Perales J C, et al. Branched RNA: a new architecture for RNA interference. J Nucleic Acids, 2011, 2011(2011),ID586935.

[34] Chang C I, Lee T Y, Kim S, et al. Enhanced intracellular delivery and multi-target gene silencing triggered by tripodal RNA structures. J Gene Med. 2012, 14(2):138-146.

[35] Nakashima Y, Abe H, Abe N, et al. Branched RNA nanostructures for RNA interference. Chem Commun (Camb), 2011, 47(29):8367-8369.

[36] Shin D, Lee H, Kim S I, et al. Optimization of linear double-stranded RNA for the production of multiple siRNAs targeting hepatitis C virus. RNA, 2009, 15(5):898-910.

[37] Suhy D A, Kao S C, Mao T, et al. Safe, long-term hepatic expression of anti-HCV shRNA in a nonhuman primate model. Mol Ther, 2012, 20(9):1737-1749.

[38] Chang C I, Kang H S, Ban C, et al. Dual-target gene silencing by using long, synthetic siRNA duplexes without triggering antiviral responses. Mol Cells, 2009, 27(6):689-695.

[39] Wu Y Y, Chen L, Wang G L, et al. Inhibition of hepatocellular carcinoma growth and angiogenesis by dual silencing of NET-1 and VEGF. J Mol Histol, 2013, 44(4):433-445.

[40] Peng W, Chen J, Qin Y, et al. Long double-stranded multiplex siRNAs for dual genes silencing. Nucleic Acid Ther, 2013, 23(4):281-288.

[41] Chang C I, Lee T Y, Yoo J W, et al. Branched, tripartite-interfering RNAs silence multiple target genes with long guide strands. Nucleic Acid Ther, 2012, 22(1):30-39.

[42] 蒋婷婷, 温晓霞, 陈尧. 沉默 c2orf68 基因对结直肠癌细胞增殖的影响. 中国生物工程杂志, 2014, 34(2):7-13. Jiang T T, Weng X X, Chen Y. Effect of silencing c2orf68 gene on the proliferation of colorectal adenocarcinoma cells. China Biotechnology, 2014, 34(2):7-13.

[43] 王鑫, 陈玲, 陆航,等. RNAi沉默CXCR7对人结肠癌细胞 SW620特异性靶向抑制的实验研究.中国生物工程杂志, 2014, 34(2):14-20. Wang X, Chen L, Lu H, et al. Experimental study of specific targeted inhibition from RNAi silencing CXCR7 to human colon cancer cell SW620. China Biotechnology, 2014, 34(2):14-20.

[44] Qin J, Xu Y, Li X, et al. Effects of lentiviral-mediated Foxp1 and Foxq1 RNAi on the hepatocarcinoma cell. Exp Mol Pathol, 2014, 96(1):1-8.

[1] SU Lan, ZHANG Ping, WANGYANG Jun-qi, ZHONG Ru-gang. Progress on the Inhibition of Hepatitis B virus by siRNA Strategy[J]. China Biotechnology, 2014, 34(9): 102-107.