Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (08): 126-130    DOI: Q998.113
    
Research Progress in Plant Cuticle Responses to Abiotic Stresses
XU Fa-xi,LIU Cui-fang,ZOU Jie,WANG Yu-hua,LI Wei,CHEN Xin-bo
Crop Gene Engineering Key Laboratory of Hunan Province, Hunan Agriculture University, Changsha 410128, China
Download: HTML   PDF(379KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Plant cuticle plays an important role in the plant life cycle. The cuticle is highly hydrophobic layer of cutin intermeshed and coated with waxes that covers essentially all aerial organs and mainly composed of fatty acids and their derivatives. Plant cuticle can be divided into the inner cutin and outer wax layer and forms a protective layer against temperature extremes, drought, high salinity and other abiotic stresses. The cuticle also protects inner tissues from bacterial and fungal pathogens, herbivore attacks. The recent research progresses in the relationship between plant cuticle and stress resistance, especially drought tolerance were reviewed.



Key wordsCuticle      Cutin      Wax      Abiotic stresses     
Received: 25 January 2010      Published: 25 August 2010
Corresponding Authors: Xinbo Chen     E-mail: xinbochen@live.cn
Cite this article:

HU Fa-Chi, LIU Cui-Fang, JU Jie, WANG Yo-Hua, LI Wei, CHEN Shen-Bei. Research Progress in Plant Cuticle Responses to Abiotic Stresses. China Biotechnology, 2010, 30(08): 126-130.

URL:

https://manu60.magtech.com.cn/biotech/Q998.113     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I08/126

[1] 高峰, 熊爱生, 彭日荷, 等. 抗逆相关DREB转录因子的研究进展及应用. 上海农业学报, 2008 , 24(1): 118 123. Gao F, Xiong A S, Peng R H, et al. Acta Agri Shanghai, 2008, 24(1): 118 ~123. 
[2] 李昊文, 赵军. 非生物逆境信号转导的分子机制. 中国农业科技导报, 2008, 10(S1): 16 Li H W, Zhao, J. J Agri Sci Tech, 2008, 10(S1): 16. 
[3] Samuels L, Kunst L, Jetter R. Sealing plant surfaces: cuticular wax formation by epidermal cells. Annu Rev Plant Biol, 2008, 59: 683707. 
[4] 李魏强, 张正斌, 李景娟. 植物表皮蜡质与抗旱及其分子生物学. 植物生理与分子生物学学报, 2006, 32(5): 505512. Li W Q, Zhang Z B, Li J J. J Plant Physiol and Mol Biol, 2006, 32(5): 505512. 
[5] Kannangara R, Branigan C, Liu Y, et al. The transcription factor WIN1/SHN1 regulates cutin biosynthesis in Arabidopsis thaliana. Plant Cell, 2007, 19(4): 12781294. 
[6] Rowland O, Zheng H, Hepworth S R, et al. CER4 encodes an alcoholforming fatty acylcoenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol, 2006, 142(3): 866877. 
[7] Aarts M G, Keijzer C J, Stiekema W J, et al. Molecular characterization of the CER1 gene of Arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell, 1995, 7(12): 21152127. 
[8] Chen X, Goodwin S M, Boroff V L, et al. Cloning and characterization of the WAX2 gene of Arabidopsis involved in cuticle membrane and wax production. Plant Cell, 2003, 15(5): 11701185. 
[9] Costaglioli P, Joubès J, Garcia C, et al. Profiling candidate genes involved in wax biosynthesis in Arabidopsis thaliana by microarray analysis. Biochim Biophys Acta, 2005, 1734(3): 247258. 
[10] Chen G, Sagi M, Weining S, et al. Wild barley eibi1 mutation identifies a gene essential for leaf water conservation. Planta, 2004, 219(4): 684693. 
[11] Zhang J, Broeckling C D, Blancaflor E B, et al. Overexpression of WXP1, a putative Medicago truncatula AP2 domaincontaining transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa(Medicago sativa). Plant J, 2005, 42(5): 689707. 
[12] Wang H, Hao J, Chen X, et al. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol, 2007, 65(6): 799815. 
[13] Yu D, Ranathunge K, Huang H, et al. Wax CrystalSparse Leaf1 encodes a betaketoacyl CoA synthase involved in biosynthesis of cuticular waxes on rice leaf. Planta, 2008, 228(4): 675685. 
[14] Cameron K D, Teece M A, Smart L B. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol, 2006, 140(1): 176183. 
[15] Kosma D K, Bourdenx B, Bernard A, et al. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol, 2009, 151(4): 19181929. 
[16] Samdur M Y, Manivel P, Jain V K, et al. Genotypic differences and waterdeficit induced enhancement in epicuticular wax load in peanut. Crop Sci, 2003, 43(4): 12941299. 
[17] Shepherd T, Wynne Griffiths D. The effects of stress on plant cuticular waxes. New Phytol, 2006, 171(3): 469499. 
[18] Kim K S, Park S H, Jenks M A, et al. Influence of water deficit on leaf cuticular waxes of soybean (Glycine max [L.] Merr.). Int J Plant Sci, 2007, 168(3): 307316. 
[19] Kim K S, Park S H, Jenks M A. Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. Plant Physiol, 2007, 164(9): 11341143. 
[20] Kosma D K, Jenks M A. Ecophysiological and moleculargenetic determinants of plant cuticle function in drought and salt stress tolerance. In: M A Jenks, PM Hasegawa, S M Jain. Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Dordrecht, Germany: Springer Netherlands, 2007. 91120. 
[21 ] Jenks M A, Andersen L, Teusink R S, et al. Leaf cuticular waxes of potted rose cultivars as affected by plant development, drought and paclobutrazol treatments. Physiol Plant, 2001, 112(1): 6270. 
[22] Islam M A, Du H, Ning J, et al. Characterization of Glossy1homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Mol Biol, 2009, 70(4): 443456. 
[23] Jiang Q, Zhang J, Guo X, et al. Physiological characterization of transgenic alfalfa (Medicago sativa) plants for improved drought tolerance. Int J Plant Sci, 2009, 170(8): 969978. 
[24] Burow G B, Franks C D, Xin Z. Genetic and physiological analysis of an irradiated bloomless mutant (epicuticular wax mutant) of sorghum. Crop Sci, 2008, 48(1): 4148. 
[25] Panikashvili D, SavaldiGoldstein S, Mandel T, et al. The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion, Plant Physiol, 2007, 145(4): 13451360. 
[26] Cominelli E, Sala T, Calvi D, et al. Overexpression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. Plant J, 2008, 53(1): 5364. 
[27] Kurdyukov S, Faust A, Nawrath C, et al. The epidermisspecific extracellular bodyguard controls cuticle development and morphogenesis in Arabidopsis. Plant Cell, 2006, 18(2): 321339. 
[28] Schnurr J, Shockey J, Browse J. The acylCoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis. Plant Cell, 2004, 16(3): 629642. 
[29] Nawrath C. Unraveling the complex network of cuticular structure and function. Curr Opin Plant Biol, 2006, 9(3): 281287. 
[30] Li Y, Beisson F, Koo A J, et al. Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberinlike monomers. Proc Natl Acad Sci USA, 2007, 104(46): 1833918344. 
[31] Rao G G, Basha S K M, Rao G R. Effect of NaCl salinity on amount and composition of cuticular wax and cuticular transpiration rate in peanut (Arachis hypogaea L.). Indian J Exp Biol, 1981, 19: 880881. 
[32] Mills D, Zhang G, Benzioni A. Effect of different salts and of ABA on growth and mineral uptake in jojoba shoots grown in vitro. Plant Physiol, 2001, 158(8): 1031~1039 
[33] Gauvrit C, Gaillardon P. Effect of lowtemperatures on 2, 4D behaviour in maize plants. Weed Res, 1991, 31(3): 135142. 
[34] Long L M, Patel H P, Cory W C, et al. The maize epicuticular wax layer provides UV protection. Funct Plant Biol, 2003, 30(1): 7581. 
[35] Goodwin S M, Jenks M A. Plant cuticle function as a barrier to water loss. In: Jenks M A, Hasegawa PM. Plant Abiotic Stress. Oxford, UK: Blackwell Publishing Inc. 2005. 1436. 
[36] Ukitsu H, Kuromori T, Toyooka K, et al. Cytological and biochemical analysis of COF1, an Arabidopsis mutant of an ABC transporter gene. Plant Cell Physiol, 2007, 48(11): 15241533. 
[37] Jung K H, Han M J, Lee D Y, et al. Waxdeficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell, 2006, 18(11): 30153032.

[1] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[2] YANG Xian-peng, WANG Zhou-ya, GAO Xiang, LI Rong-jun, LÜ Shi-you. Research Progress in Plant Cuticular Wax Biosynthesize and Regulation[J]. China Biotechnology, 2016, 36(9): 75-80.
[3] GUO Sen, WU Dan, CHEN Sheng, WU Jing, CHEN Jian. Fermentation Optimization on Flask-scale and Secretional Expression of Recombinant Cutinase-CBM in E.coli[J]. China Biotechnology, 2011, 31(9): 55-61.
[4] WAN Bing-liang, ZHA Zhong-ping, DU Xue-shu. Expression Profile Analysis of Rice Heat Shock Transcription Factor (HSF) Genes in Response to Plant Hormones and Abiotic Stresses[J]. China Biotechnology, 2010, 30(10): 22-32.
[5] . Expression Profile Analysis of Rice Heat Shock Transcription Factor (HSF) Genes in Response to Plant Hormones and Abiotic Stresses[J]. China Biotechnology, 2010, 30(10): 0-0.
[6] ZHANG Yao, CHEN Cheng, TUN Dan, TUN Jing, CHEN Jian. Cutinase and its Application in Textile[J]. China Biotechnology, 2010, 30(09): 105-109.
[7] CHEN Cheng, ZHANG Fu-Hua, CHEN Jian, TUN Jing. Effects of Fed-fermentation on Cutinase Production by Recombinant Bacillus subtilis[J]. China Biotechnology, 2010, 30(01): 62-66.
[8] Jian Chen . Studies on Two-stage pH Control Strategy of Recombinant Cutinase Production[J]. China Biotechnology, 2008, 28(5): 59-64.