Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (12): 35-44    DOI:
    
Comparative Genomic Analysis of Lactobacillus plantarum
CHEN Chen, REN Jing, ZHOU Fang-fang, LIU Zhen-min, GUO Ben-heng
State Key Laboratory of Dairy Biotechnology, Institute of Bright Dairy & Food Co., Ltd., Shanghai 200436, China
Download: HTML   PDF(1939KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  As an important species of Lactic acid bacteria, Lactobacillus plantarum is closely related to the human life with various probiotic properties. With the advances of DNA-sequencing, genome determination for many strains of L. plantarum becomes available. Comparative analysis of several genomes of L. plantarum was performed based on the genome of L. plantarum ST-Ⅲ. The genes for plantaricin biosynthesis, sugar metabolism, proteolytic system and extracellular polysaccharide biosynthesis were analyzed specifically, providing advices for the research and application of this important species.

Key wordsComparative genomics      Lactobacillus plantarum      Genome     
Received: 08 October 2013      Published: 25 December 2013
ZTFLH:  Q93  
Cite this article:

CHEN Chen, REN Jing, ZHOU Fang-fang, LIU Zhen-min, GUO Ben-heng. Comparative Genomic Analysis of Lactobacillus plantarum. China Biotechnology, 2013, 33(12): 35-44.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I12/35

[1] Siezen R J, van Hylckama Vlieg J E. Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microb Cell Fact, 2011, 10(Suppl 1):S3.
[2] Bolotin A, Wincker P, Mauger S, et al. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res, 2001, 11(5): 731-753.
[3] Liu Z, Guo B, Wang Y, et al. Cholesterol removal from media by Lactobacillus plantarum ST-Ⅲ. Milchwissenschaft, 2008, 63(2): 134-137.
[4] Ren J, Sun K, Wu Z, et al. All 4 bile salt hydrolase proteins are responsible for the hydrolysis activity in Lactobacillus plantarum ST-Ⅲ. J Food Sci, 2011, 76(9): 622-628.
[5] Chen C, Ai L, Zhou F, et al. Complete nucleotide sequence of plasmid pST-Ⅲ from Lactobacillus plantarum ST-Ⅲ. Plasmid, 2012, 67(3): 236-244.
[6] Wang Y, Chen C, Ai L, et al. Complete genome sequence of the probiotic Lactobacillus plantarum ST-Ⅲ. J Bacteriol, 2011, 193(1): 313-314.
[7] Kanehisa M, Goto S, Kawashima S, et al. The KEGG resource for deciphering the genome. Nucleic Acids Res, 2004, 32(Database issue): 277-280.
[8] Delcher A L, Kasif S, Fleischmann R D, et al. Alignment of whole genomes. Nucleic Acids Res, 1999, 27(11): 2369-2376.
[9] Kleerebezem M, Boekhorst J, van Kranenburg R, et al. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A, 2003, 100(4): 1990-1995.
[10] Zhang Z Y, Liu C, Zhu Y Z, et al. Complete genome sequence of Lactobacillus plantarum JDM1. J Bacteriol, 2009, 191(15): 5020-5021.
[11] Axelsson L, Rud I, Naterstad K, et al. Genome sequence of the naturally plasmid-free Lactobacillus plantarum strain NC8 (CCUG 61730). J Bacteriol, 2012, 194(9): 2391-2392.
[12] Molenaar D, Bringel F, Schuren F H, et al. Exploring Lactobacillus plantarum genome diversity by using microarrays. J Bacteriol, 2005, 187(17): 6119-6127.
[13] Gonzalez B, Arca P, Mayo B, et al. Detection, purification, and partial characterization of plantaricin C, a bacteriocin produced by a Lactobacillus plantarum strain of dairy origin. Appl Environ Microbiol, 1994, 60(6): 2158-2163.
[14] Nissen-Meyer J, Larsen A G, Sletten K, et al. Purification and characterization of plantaricin A, a Lactobacillus plantarum bacteriocin whose activity depends on the action of two peptides. J Gen Microbiol, 1993, 139(9): 1973-1978.
[15] Anderssen E L, Diep D B, Nes I F, et al. Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl Environ Microbiol, 1998, 64(6): 2269-2272.
[16] Jimenez-Diaz R, Ruiz-Barba J L, Cathcart D P, et al. Purification and partial amino acid sequence of plantaricin S, a bacteriocin produced by Lactobacillus plantarum LPCO10, the activity of which depends on the complementary action of two peptides. Appl Environ Microbiol, 1995, 61(12): 4459-4463.
[17] Suma K, Misra M C, Varadaraj M C. Plantaricin LP84, a broad spectrum heat-stable bacteriocin of Lactobacillus plantarum NCIM 2084 produced in a simple glucose broth medium. Int J Food Microbiol, 1998, 40(1-2): 17-25.
[18] Diep D B, Havarstein L S, Nes I F. A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol, 1995, 18(4): 631-639.
[19] Diep D B, Havarstein L S, Nes I F. Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol, 1996, 178(15): 4472-4483.
[20] 季红, 吴正钧, 韩瑨, 等. 植物乳杆菌ST-Ⅲ细菌素类抑菌活性的研究. 食品研究与开发, 2013, 34(07): 6-12. Ji H, Wu Z J, Han J, et al.Study on bacteriocin production of Lactobacillus plantarum ST-Ⅲ. Food Res Dev, 2013, 34(07): 6-12.
[21] Sturme M H, Francke C, Siezen R J, et al. Making sense of quorum sensing in lactobacilli: a special focus on Lactobacillus plantarum WCFS1. Microbiology, 2007, 153(Pt 12): 3939-3947.
[22] Pridmore R D, Berger B, Desiere F, et al. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A, 2004, 101(8): 2512-2517.
[23] Savijoki K, Ingmer H, Varmanen P. Proteolytic systems of lactic acid bacteria. Appl Microbiol Biotechnol, 2006, 71(4): 394-406.
[24] Lengeler J W, Jahreis K. Bacterial PEP-dependent carbohydrate: phosphotransferase systems couple sensing and global control mechanisms. Contrib Microbiol, 2009, 16:65-87.
[25] Ganzle M G, Follador R. Metabolism of oligosaccharides and starch in lactobacilli: a review. Front Microbiol, 2012, 3:1-15.
[26] 赵玉娟, 李盛钰, 牛春华, 等. 鼠李糖乳杆菌JAAS8胞外多糖聚合和转运相关基因的克隆及生物信息学分析. 基因组学与应用生物学, 2010, 29(03): 447-452. Zhao Y J, Li S Y, Niu C H, et al. Cloning and bioinformatics analysis of the exopolysaccharide biosynthetic polymerization and transportation genes from Lactobacillus rhamnosus JAAS8. Genomics Appl Biol, 2010, 29(03): 447-452.
[27] De Vuyst L, Degeest B. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev, 1999, 23(2): 153-177.
[28] Remus D M, Kranenburg R, Swam I I, et al. Impact of 4 Lactobacillus plantarum capsular polysaccharide clusters on surface glycan composition and host cell signaling. Microb Cell Fact, 2012, 11(1): 149.
[1] WANG Xiao-jie,MENG Fan-qiang,ZHOU Li-bang,LV Feng-xia,BIE Xiao-mei,ZHAO Hai-zhen,LU Zhao-xin. Breeding of Brevibacillin Producing Strain by Genome Shuffling and Optimization of Culture Conditions[J]. China Biotechnology, 2021, 41(8): 42-51.
[2] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[3] YIN Fang-bing,WANG Cheng,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Dissecting Genetic Architecture and Formation Mechanism of Maize Ear Traits[J]. China Biotechnology, 2021, 41(12): 30-46.
[4] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[5] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[6] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[7] WANG Yan-bo,WEI Jia,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize[J]. China Biotechnology, 2021, 41(12): 88-102.
[8] JIANG Ji-zhe, PAN Hang, YUE Min, ZHANG Le. The Study of Worldwide Brucella canis of Phylogenetic Groups by Comparative Genomics-based Approaches[J]. China Biotechnology, 2020, 40(3): 38-47.
[9] CHENG Zi-zhao,CHEN Chu-chu,YING Lei,LI Xiao-kun,HUANG Zhi-feng. Comparison of Genomic and Infection Characteristics of Coronavirus[J]. China Biotechnology, 2020, 40(11): 56-66.
[10] Jun CHEN,Hua-jun ZHENG,Ya-ming LIU,Guo-ping ZHAO,Song QIN. The Analysis of the Low Coverage Haematococcus Pluvialis Draft Genome[J]. China Biotechnology, 2018, 38(7): 21-28.
[11] Cun-duo TANG,Hong-ling SHI,Yue MA,Peng-ju DING,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Gene Mining, Expression and Characterization of Novel R-mandelate Dehydrogenases[J]. China Biotechnology, 2018, 38(2): 30-37.
[12] SONG Jia-wen, TIAN Su, ZHANG Yu-ru, WANG Zhi-zhen, CHANG Zhong-yi, GAO Hong-liang, BU Guo-jian, JIN Ming-fei. Genome Shuffling Enhances Transglutaminase Production of Streptomyces mobaraensis[J]. China Biotechnology, 2017, 37(9): 105-111.
[13] XU Yuan-yuan, YU Han-bing, WU Fei-hua, WU Xiao-mei. Molecular Mechanisms of Antimicrobial Defenses and Resistance in Forest Trees in a Genomic Era[J]. China Biotechnology, 2017, 37(6): 114-123.
[14] MING Jin-yu, LI Hua-dan, LIANG Shi-bo, HE Li, YU Qin-han, LI Ji-lin, ZHANG Yan-ming. Research Progress in the Development of Plant Functional Target Gene Markers[J]. China Biotechnology, 2017, 37(3): 83-91.
[15] LIANG Shi-bo, LIU Jia-ying, LIU Jie, YANG Jiang-tao, LI Ji-lin, ZHANG Yan-ming. Next-generation Sequencing Applications for Crop Genomes[J]. China Biotechnology, 2017, 37(2): 111-120.