Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (3): 83-91    DOI: 10.13523/j.cb.20170312
    
Research Progress in the Development of Plant Functional Target Gene Markers
MING Jin-yu, LI Hua-dan, LIANG Shi-bo, HE Li, YU Qin-han, LI Ji-lin, ZHANG Yan-ming
College of Life Science and Technology, Harbin Normal University, Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin 150025, China
Download: HTML   PDF(1230KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

With the development of functional genomics, molecular marker technology is moving towards the direction of functional target marker genes. Functional marker is developed according to the specific region polymorphism motif of functional genes closely related to phenotype. Since these functional markers are directly derived from functional motifs within the gene, these markers do not require further validation to determine whether alleles are available in different genetic backgrounds.Gene-targeted and functional marker, conserved DNA and gene family based markers, transposable element based markers, resistance-gene based markers, RNA-based markers and targeted fingerprinting markers were discussed, which are aimed at providing a theoretical basis for the development and application of molecular markers.



Key wordsFunctional molecular marker      Genome      Targeted gene marker     
Received: 26 November 2016      Published: 25 March 2017
ZTFLH:  Q789  
Cite this article:

MING Jin-yu, LI Hua-dan, LIANG Shi-bo, HE Li, YU Qin-han, LI Ji-lin, ZHANG Yan-ming. Research Progress in the Development of Plant Functional Target Gene Markers. China Biotechnology, 2017, 37(3): 83-91.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170312     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I3/83

[1] Henry R J. Plant Genotyping:the DNA Fingerprinting of Plants. Wallingford,UK:CABI, 2001.
[2] van Tienderen P H, De haan A A, Van der Linden C G, et al. Biodiversity assessment using markers for ecologically important traits. Trends Ecology Evolution, 2002, 17(12):577-582.
[3] Pang M X, Percy R G, Hughs E, et al. Promoter anchored amplified polymorphism based on random amplified polymorphic DNA (PAAP-RAPD) in cotton. Euphytica, 2009, 167(3):281-291.
[4] Williams J G K, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 1990, 18(22):6531-6535.
[5] Powell W, Morgante M, Andre C, et al. The comparison of RFLP, RAPDs, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 1996, 2(3):225-238.
[6] Cardle L, Ramsay L, Milboume D, et al. Computation and experimental characterization of physically clustered simple sequence repeats in plants. Genetices, 2000, 156(2):847-854.
[7] Wang D G, Fan J B, Siao C J, et al. Large-scale identification mapping and genotyping of single nucleotide polymorphisms in the human genome. Science, 1998, 280(5366):1077-1082.
[8] Rafalski J A, Tingey S V. Genetic diagnostics in plant breeding:RAPDs, microsatellites and machines. Trend Genet, 1993, 9:275-280.
[9] Andersen J R, Lübberstedt T. Functional markers in plants. Trends in Plant Science, 2003, 8(11):554-560.
[10] Arnaud-Haond S, Alberto F, Teixeira S, et al. Assessing genetic diversity in clonal organisms:low diversity or low resolution? Combining power and cost efficiency in selecting markers. Journal of Heredity, 2005, 96(4):434-440.
[11] Varshney R K, Mahendar T, Aggarwal R K. Genic Molecular Markers in Plants:Development and Applications. In:Varshney R K, Tuberosa R.Genomic-assisted Crop Improvement:vol.1. Genomics Approaches and Platforms. New York:Springer, 2007:13-29.
[12] 王昊龙, 韩俊杰, 李淼淼,等.功能标记的开发及在禾谷类作物中的应用. 核农学报, 2014, 28(11):1963-1971. Wang H L, Han J J, Li M M, et al. Development and application of functional markers in cereal crops. Journal of Nuclear Agricultural Sciences, 2014, 28(11):1963-1971.
[13] Panwar P, Saini R K, Sharma N, et al. Efficiency of RAPD, SSR and cytochrome P450 gene based markers in accessing genetic variability amongst finger millet (Eleusine coracana) accessions. Molecular Biology Reports, 2010, 37(8):4075-4082.
[14] Schalk M, Nedelkina S, Schoch G, et al. Role of unusual amino acid residues in the proximal and distal heme regions of a plant P450, CYP73A1. Biochemistry, 1999, 38(19):6093-6103.
[15] Collard B C Y, Mackill D J. Conserved DNA-derived polymorphism (CDDP):a simple and novel method for generating DNA markers in plants. Plant Molecular Biology Reporter, 2009, 27(4):558-562.
[16] Galasso I, Manca A, Braglia L, et al. h-TBP:an approach based on intron-length polymorphism for the rapid isolation and characterization of the multiple members of the β-tubulin gene family in Camelina sativa (L.) Crantz. Molecular Breeding, 2011, 28(4):635-645.
[17] Weining S, Langridge P. Identification and mapping of polymorphisms in cereals based on the polymerase chain reaction. Theoretical and Applied Genetics. Theoretische und angewandte Genetik, 1991, 82(2):209-216.
[18] Bardini M, Lee D, Donini P, Mariani A. Tubulin-based polymorphism (TBP):a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species. Genome, 2004, 291:281-291.
[19] Jin H, Martin C. Multifunctionality and diversity within the plant MYB-gene family. Plant Molecular Biology, 1999, 41(5):577-585.
[20] Feschotte C, Jiang N, Wessler S R. Plant transposable elements:where genetics meets genomics. Nature Reviews Genetics, 2002, 3(5):329-341.
[21] Hill P, Burford D, Martin D M A, et al. Retrotransposon populations of Vicia species with varying genome size. Molecular Genetics and Genomics Mgg, 2005, 273(5):371-381.
[22] Finnegan D J. Eukaryotic transposable elements and genome evolution. Trends in Genetics, 1989, 5(4):103-107.
[23] Wicker T, Sabot F, Hua-Van A, et al. A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 2007, 8(12):973-982.
[24] Kumar A, Bennetzen J L. Plant retrotransposons. The Annual Review of Genetics, 1999, 33(1):479-532.
[25] Kenward K D, Bai D, Ban M R, et al. Isolation and characterization of Tnd-1, a retrotransposon marker linked to black root rot resistance in tobacco. Theoretical and Applied Genetics, 1999, 98(3):387-395.
[26] Kalendar R, Grob T, Regina M, et al. IRAP and REMAP:two new retrotransposon-based DNA fingerprinting techniques. Theoretical and Applied Genetics, 1999, 98(5):704-711.
[27] Branco C J S, Vieira E A, Malone G, et al. IRAP and REMAP assessments of genetic similarity in rice. Journal of Applied Genetics, 2007, 48(2):107-113.
[28] Seibt K M, Wenke T, Wollrab C, et al. Development and application of SINE-based markers for genotyping of potato varieties. Theoretical and Applied Genetics. Theoretische und angewandte Genetik, 2012, 125(1):185-196.
[29] Kalendar R, Antonius K, Smý kal P, et al. iPBS:a universal method for DNA fingerprinting and retrotransposon isolation. Theoretical and Applied Genetics, Theoretische und angewandte Genetik, 2010,121:1419-1430.
[30] Waugh R, McLean K, Flavell A J, et al. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Molecular and General Genetics Mgg, 1997, 253(6):687-694.
[31] Tam S M, Mhiri C, Vogelaar A, et al. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theoretical and Applied Genetics, 2005, 110(5):819-831.
[32] Schulman AH. Molecular markers to assess genetic diversity. Euphytica, 2006,158(3):313-321.
[33] Jones J D G, Dangl J L. The plant immune system. Nature, 2006, 444(7117):323-329.
[34] Wolpert T J, Dunkle L D, Ciuffetti L M. Host-selective toxins and avirulence determinants:what's in a name?. Annual Review Phytopathology, 2002, 40(1):251-285.
[35] Gebhardt C, Valkonen J P. Organization of genes controlling disease resistance in the potato genome. Annual Review of Phytopathology, 2001, 39(4):79-102.
[36] Tian Y P, Valkonen J P. Genetic determinants of Potato virus Y required to overcome or trigger hypersensitive resistance to PVY strain group O controlled by the gene Ny in potato. Molecular Plant Microbe Interact, 2012,26(3):297-305.
[37] van Ooijen G, van den Burg H A, Cornelissen B J C, et al. Structure and function of resistance proteins in solanaceous plants. Annual Review Phytopatholy, 2007, 45(1):43-72.
[38] Martin G B, Bogdanove A J, Sessa G. Understanding the functions of plant disease resistance proteins. Annual Review of Plant Biology, 2003, 54(1):23-61.
[39] Takken F L, Albrecht M, Tameling W I. Resistance proteins:molecular switches of plant defence. Current Opinion in Plant Biology, 2006, 9(4):383-390.
[40] Brugmans B, Wouters D, van Os H, et al. Genetic mapping and transcription analyses of resistance gene loci in potato using NBS profiling. Theoretical and Applied Genetics, 2008, 117(8):1379-1388.
[41] Wang M, Berg R, Linden G, Vosman B. The utility of NBS profiling for plant systematics:a first study in tuber-bearing Solanum species. Plant Systematics and Evolution, 2008, 276(1-2):137-148.
[42] van der Linden C G, Wouters D C A E, Mihalka V, et al. Efficient targeting of plant disease resistance loci using NBS profiling. Theoretical and Applied Genetics, 2004, 14(2):421-429.
[43] Gebhardt C, Bellin D, Henselewski H, et al. Marker-assisted combination of major genes for pathogen resistance in potato. Theoretical and Applied Genetics, 2006, 112(8):1458-1464.
[44] Gupta P K, Rustgi S. Molecular markers from the transcribed/expressed region of the genome in higher plants. Functional and Integrative Genomics, 2004, 4(3):139-162.
[45] Gui Y, Yan G, Bo S, et al. iSNAP:a small RNA-based molecular marker technique. Plant Breeding, 2011, 130(5):515-520.
[46] Bachem C, Oomen R, Visser R. Transcript imaging with cDNA-AFLP:a stepby-step protocol. Plant Molecular Biology Reporter, 1998, 16(2):157-173.
[47] Xiao X, Li H, Tang C. A silver-staining cDNA-AFLP protocol suitable for transcript profiling in the latex of Hevea brasiliensis (para rubber tree). Molecular Biotechnology, 2009, 42(1):91-99.
[48] Song Y, Wang Z, Bo W, et al. Transcriptional profiling by cDNA-AFLP analysis showed differential transcript abundance in response to water stress in Populus hopeiensis. BMC Genomics, 2012, 13(1):286.
[49] Brugmans B, Fernandez del Carmen A, Bachem C W B, et al. A novel method for the construction of genome wide transcriptome maps. Plant Journal, 2002, 31(2):211-222.
[50] Kashkush K, Feldman M, Levy A A. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics, 2002, 160(4):1651-1659.
[51] Suárez M C, Bernal A, Gutiérrez J, et al. Developing expressed sequence tags (ESTs) from polymorphic transcript-derived fragments (TDFs) in cassava (Manihot esculenta Crantz). Genome, 2000, 43(1):62-67.
[52] Bryan G J, Stephenson P, Collins A, et al. Low levels of DNA sequence variation among adapted genotypes of hexaploid wheat. Theoretical and Applied Genetics, 1999,99(1-2):192-198.
[53] Gentzbittel L, Mestries E, Mouzeyar S, et al. A composite map of expressed sequences and phenotypic traits of the sunflower (Helianthus annuus L.) genome. Theoretical and Applied Genetics, 1999, 99(1-2):218-234.
[54] Akhunov E D, Goodyear A W, Geng S, et al. The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Research, 2003, 13(5):753-763.
[55] Woodhead M, Russell J, Squirrell J, et al. Development of EST-SSRs from the alpine lady-fern, Athyrium distentifolium. Molecular Ecology Notes, 2003, 3(2):287-290.
[56] Cho Y G, Ishii T, Trmnykh S, et al. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2000, 100(5):713-722.
[57] Eujayl I, Sledge M K, Wang L, et al. Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. Theoretical and Applied Genetics, theoretische und angewandte Genetik, 2004, 108(3):414-422.

[1] WANG Xiao-jie,MENG Fan-qiang,ZHOU Li-bang,LV Feng-xia,BIE Xiao-mei,ZHAO Hai-zhen,LU Zhao-xin. Breeding of Brevibacillin Producing Strain by Genome Shuffling and Optimization of Culture Conditions[J]. China Biotechnology, 2021, 41(8): 42-51.
[2] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[3] YIN Fang-bing,WANG Cheng,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Dissecting Genetic Architecture and Formation Mechanism of Maize Ear Traits[J]. China Biotechnology, 2021, 41(12): 30-46.
[4] QIN Wen-xuan,LIU Xin,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Leaf Angle Traits[J]. China Biotechnology, 2021, 41(12): 74-87.
[5] WANG Rui-pu,DONG Zhen-ying,GAO Yue-xin,LONG Yan,WAN Xiang-yuan. Research Progress on Genetic Structure and Regulation Mechanism on Starch Content in Maize Kernel[J]. China Biotechnology, 2021, 41(12): 47-60.
[6] MA Ya-jie,GAO Yue-xin,LI Yi-ping,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Progress on Genetic Analysis and Molecular Dissection on Maize Plant Height and Ear Height[J]. China Biotechnology, 2021, 41(12): 61-73.
[7] WANG Yan-bo,WEI Jia,LONG Yan,DONG Zhen-ying,WAN Xiang-yuan. Research Advances on Genetic Structure and Molecular Mechanism Underlying the Formation of Tassel Traits in Maize[J]. China Biotechnology, 2021, 41(12): 88-102.
[8] CHENG Zi-zhao,CHEN Chu-chu,YING Lei,LI Xiao-kun,HUANG Zhi-feng. Comparison of Genomic and Infection Characteristics of Coronavirus[J]. China Biotechnology, 2020, 40(11): 56-66.
[9] Jun CHEN,Hua-jun ZHENG,Ya-ming LIU,Guo-ping ZHAO,Song QIN. The Analysis of the Low Coverage Haematococcus Pluvialis Draft Genome[J]. China Biotechnology, 2018, 38(7): 21-28.
[10] Cun-duo TANG,Hong-ling SHI,Yue MA,Peng-ju DING,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Gene Mining, Expression and Characterization of Novel R-mandelate Dehydrogenases[J]. China Biotechnology, 2018, 38(2): 30-37.
[11] SONG Jia-wen, TIAN Su, ZHANG Yu-ru, WANG Zhi-zhen, CHANG Zhong-yi, GAO Hong-liang, BU Guo-jian, JIN Ming-fei. Genome Shuffling Enhances Transglutaminase Production of Streptomyces mobaraensis[J]. China Biotechnology, 2017, 37(9): 105-111.
[12] XU Yuan-yuan, YU Han-bing, WU Fei-hua, WU Xiao-mei. Molecular Mechanisms of Antimicrobial Defenses and Resistance in Forest Trees in a Genomic Era[J]. China Biotechnology, 2017, 37(6): 114-123.
[13] LIANG Shi-bo, LIU Jia-ying, LIU Jie, YANG Jiang-tao, LI Ji-lin, ZHANG Yan-ming. Next-generation Sequencing Applications for Crop Genomes[J]. China Biotechnology, 2017, 37(2): 111-120.
[14] LI Xiao-fei, CAO Ying-xiu, SONG Hao. CRISPR/Cas9 System:A Recent Progress[J]. China Biotechnology, 2017, 37(10): 86-92.
[15] REN Shuang, ZHU Hong-liang. Establishment of Taqman Quantitative PCR System to Estimate Copy Numbers of Exogenous Transgene in Genome Edited Tomato[J]. China Biotechnology, 2017, 37(10): 72-80.