Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (08): 100-105    DOI: Q815
    
Optimization of Lipase Production Conditions by Bacillus subtilis Using Surface Methodology
SONG Ping,QI Xiao-ling,HU Yi,XIE Ning-chang
College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China
Download: HTML   PDF(1485KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The fermentation conditions of lipase production by Bacillus subtilis CICC 20034 were optimized. Initially, the most suitable intruder tributyrin, nitrogen source urea, carbon glucose, and MgSO4 were selected according to single factorial experiments respectively. Based on the result, screening methodology Plackett-Burman design was used to evaluate the effects of twelve factors related to lipase production and four statistically significant factors tributyrin, urea, KH2PO4 and pH were selected. The path of steepest ascent was used to approach the optimal region of lipase production subsequently. Then, the optimal combined concentration for maximum enzyme activity were further optimized by response surface methodology and determined as follows: tributyrin 2. 62%, urea 8.57g/L, KH2PO4 2.59g/L and pH 9.47. The optimization of culture conditions of B.subtilis CICC 20034 led to a 6.7-fold increase in lipase production relative to initial result 0.072 /ml, which indicate that single factor in combination with response surface methodology, is an effective method for optimization of lipase production conditions by B.subtilis CICC 20034.



Key wordsLipase      Bacillus subtilis      Plackett-Burman design      Response surface methodology      Optimization     
Received: 21 January 2010      Published: 25 August 2010
Cite this article:

SONG Ping, CU Xiao-Ling, HU Yi, XIE Ning-Chang. Optimization of Lipase Production Conditions by Bacillus subtilis Using Surface Methodology. China Biotechnology, 2010, 30(08): 100-105.

URL:

https://manu60.magtech.com.cn/biotech/Q815     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I08/100

[1] Sharma R, Chisti Y, Banerjee U C. Production, purification, properties of induced lipases. Biotechnol Adv. 2001, 19: 627662. 
[2] 牛冬云,张义正. 碱性脂肪酶产生菌的筛选及产酶条件的优化. 食品与发酵工业, 2002, 29(5): 2831. Niu D Y, Zhang Y Z. Food and Fermentation Industries, 2002, 29(5): 2831. 
[3] Lesuisse E, Schanck K, Colson C. Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pHtolerant enzyme. Eur J Biochem, 1993, 216: 155160. 
[4] Nthangeni M B, Patterton H G, Tonder A, et al. Overexpression and properties of a purified recombinant Bacillus licheniformis lipase: a comparative report on Bacillus lipases. Enzyme Microb Technol, 2001, 28: 705712. 
[5] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem 1976, 72: 248254. 
[6] Tang L, Xia L. Purification and partial characterization of a lipase from Bacillus coagulans ZJU318. Appl Biochem Biotech, 2005, 125: 139146. 
[7] He X S, Brückner R, Doi R H. The protease genes of Bacillus subtilis. Res Microbiol, 1991, 142, 797803. 
[8] Ma J, Zhang Z, Wang B. Overexpression and characterization of a lipase from Bacillus subtilis. Protein Expr Purif, 2006, 45: 2229. 
[9] Steinmetz M, Kunst F, Dedonder R. Mapping of mutations affecting synthesis of exocellular enzymes in Bacillus subtilis. Mol Gen Genet, 1976, 148: 281285. 
[10] Lesuisse E, Schanck K, Colson C. Purification and preliminary characterization of the extracellular lipase of Bacillus subtilis 168, an extremely basic pHtolerant enzyme. Eur J Biochem, 1993, 216, 155160. 
[11] Eggert T, Pouderoyen G, Dijkstra B W. Lipolytic enzymes LipA and LipB from Bacillus subtilis differ in regulation of gene expression, biochemical properties, and threedimensional structure. FEBS Lett, 2001, 502: 8992.

[1] WANG Xiao-jie,MENG Fan-qiang,ZHOU Li-bang,LV Feng-xia,BIE Xiao-mei,ZHAO Hai-zhen,LU Zhao-xin. Breeding of Brevibacillin Producing Strain by Genome Shuffling and Optimization of Culture Conditions[J]. China Biotechnology, 2021, 41(8): 42-51.
[2] ZHOU Hui-ying,ZHOU Cui-xia,ZHANG Ting,WANG Xue-yu,ZHANG Hui-tu,JI Yi-zhi,LU Fu-ping. Enhancing the Expression of the Substrate by the Extracellular Secreted Enzymes and Improving the Alkaline Protease Production in Bacillus licheniformis[J]. China Biotechnology, 2021, 41(2/3): 53-62.
[3] WEI Zi-xiang,ZHANG Liu-qun,LEI Lei,HAN Zheng-gang,YANG Jiang-ke. Improving the Activity and Thermal Stability of Thermomyces lanuginosus Lipase by Rational Design[J]. China Biotechnology, 2021, 41(2/3): 63-69.
[4] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier[J]. China Biotechnology, 2020, 40(5): 57-68.
[5] JIANG Ji-zhe, PAN Hang, YUE Min, ZHANG Le. The Study of Worldwide Brucella canis of Phylogenetic Groups by Comparative Genomics-based Approaches[J]. China Biotechnology, 2020, 40(3): 38-47.
[6] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA[J]. China Biotechnology, 2020, 40(1-2): 124-132.
[7] Heng ZHU,Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier[J]. China Biotechnology, 2019, 39(7): 71-78.
[8] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[9] Long-bing YANG,Guo GUO,Hui-ling MA,Yan LI,Xin-yu ZHAO,Pei-pei SU,Yon ZHANG. Optimization of Prokaryotic Expression Conditions and Antifungal Activity Detection of Antibacterial Peptide AMPs17 Protein in Musca domestica[J]. China Biotechnology, 2019, 39(4): 24-31.
[10] Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. The Effective of Additives on the Immobilization of Lipase by Microporous Absorbent Resin[J]. China Biotechnology, 2019, 39(4): 38-51.
[11] Yue WANG,Jiang-hua LI,Guo-cheng DU,Long LIU. Molecular Modification of L-amino Acid Deaminase and Optimization of α-ketoglutaric Acid Production by Whole-cell Biocatalysis[J]. China Biotechnology, 2019, 39(3): 56-64.
[12] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[13] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[14] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[15] Hai-jiao JI,Wen-lei LI,Rui-jing Huang,Jian LI,Han-mei XU. Anti-CD20rh MAb Quality Evaluation and Monoclonal Cell Line Screening[J]. China Biotechnology, 2018, 38(8): 34-40.