Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (4): 38-51    DOI: 10.13523/j.cb.20190406
    
The Effective of Additives on the Immobilization of Lipase by Microporous Absorbent Resin
Hai-jiao LIN1,2,Ji-fu ZHANG3,Yun ZHANG1,Ai-jun SUN1,Yun-feng HU1**()
1 CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301,China
2 University of Chinese Academy of Sciences,Beijing 100049,China
3 Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
Download: HTML   PDF(1531KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Macroporous absorbent resin DA-201 was adopted as a carrier to immobilize marine-derived lipase, and the influence of additives on the immobilization process was explored. NH4Cl, mannose and glycine were used as the additives, and the conditions were optimized by a combination of single factor and orthogonal experiments. The results showed that the optimal conditions with additive NH4Cl were: citric acid-sodium citrate buffer pH6.0, immobilization temperature 30℃, carrier quantity 0.5g, NH4Cl concentration 25mmol/L, immobilized time 3.0h; enzyme activity reached 115.27U/g, which was 47.42% higher than that of the immobilized enzyme without additive. The optimal conditions with additive mannose were: potassium dihydrogen phosphate-sodium hydroxide buffer pH7.0, immobilized temperature 35℃, carrier quantity 0.5g, mannose concentration 10mmol/L, the immobilized time 4.5h; the enzyme activity reached 122.75U/g, which was 6.50% higher than that of the immobilized enzyme without additive. The optimal conditions with glycine additive: potassium dihydrogen phosphate-sodium hydroxide buffer pH7.0, immobilized temperature 20℃, carrier quantity 0.5g, the glycine concentration 25mmol/L, the immobilized time 7.5h; the enzyme activity reached 141.69U/g, which was 26.12% higher than that of the immobilized enzyme without additive. The addition of different additives exhibited great effects on the immobilization through absorbtion by macroporous absorbent resin DA-201 and could greatly improve the adsorption efficiency. Additionally, buffer type, pH, temperature, additive concentration and immobilization time were found to have great influence on the adsorption of lipase by resin DA-201, which provides good reference for subsequent research of the immobilization of industrial enzymes.



Key wordsMacroporous absorbent resin      Marine lipase      Immobilization      Additives     
Received: 01 November 2018      Published: 08 May 2019
ZTFLH:  Q814.2  
Corresponding Authors: Yun-feng HU     E-mail: yunfeng.hu@scsio.ac.cn
Cite this article:

Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. The Effective of Additives on the Immobilization of Lipase by Microporous Absorbent Resin. China Biotechnology, 2019, 39(4): 38-51.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190406     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I4/38

序号 pH 温度
(℃)
载体量
(g)
浓度
(mmol/L)
时间
(h)
1 5.0 20 0.5 10 1.5
2 5.5 25 1.0 15 3.0
3 6.0 30 1.5 20 4.5
4 6.5 35 2.0 25 6.0
Table 1 Orthogonal test factors and levels of the optimization of immobilization in the presence of NH4Cl
序号 pH 温度
(℃)
载体量
(g)
浓度
(mmol/L)
时间
(h)
1 6.0 25 0.5 2 1.5
2 6.5 30 1.0 5 3.0
3 7.0 35 1.5 10 4.5
4 7.5 40 2.0 15 6.0
Table 2 Orthogonal test factors and levels of the optimization of immobilization in the presence of ammonium mannose
序号 pH 温度
(℃)
载体量
(g)
浓度
(mmol/L)
时间
(h)
1 6.0 20 0.5 10 3.0
2 6.5 25 1.0 15 4.5
3 7.0 30 1.5 20 6.0
4 7.5 35 2.0 25 7.5
Table 3 Orthogonal test factors and evels of the optimization of immobilization in the presence of ammonium glycine
Fig.1 Screening of carriers and effects of additives on the adsorption immobilization of lipase (a)Screening of macroporous adsorption resin (b) Effect of inorganic salt additives on the immobilization of lipase (c) Effect of carbohydrate additives on the immobilization of lipase (d) Effect of amino acid additives on the immobilization of lipase
Fig.2 Optimization of lipase immobilization in the presence of NH4Cl (a) Effect of buffers on the immobilization of lipase (b) Effect of pH on the immobilization of lipase (c) Effect of temperature on the immobilization of lipase (d) Effect of the quantity of kieselguhr on the immobilization of lipase (e) Effect of NH4Cl additive concentration on the immobilization of lipase (f) Effect of immobilizing time on the immobilization of lipase
序号 pH 温度(℃) 载体量(g) 浓度(mmol/L) 时间(h) 相对酶活力(%)
1 5.0 20 0.5 10 1.5 72.62±0.97
2 5.0 25 1.0 15 3.0 76.87±0.86
3 5.0 30 1.5 20 4.5 66.82±0.73
4 5.0 35 2.0 25 6.0 55.87±0.96
5 5.5 20 1.0 20 6.0 62.74±1.40
6 5.5 25 0.5 25 4.5 91.14±0.51
7 5.5 30 2.0 10 3.0 61.77±1.03
8 5.5 35 1.5 15 1.5 44.82±1.41
9 6.0 20 1.5 25 3.0 61.55±1.34
10 6.0 25 2.0 20 1.5 55.21±0.43
11 6.0 30 0.5 15 6.0 100.00±1.28
12 6.0 35 1.0 10 4.5 66.62±0.61
13 6.5 20 2.0 15 4.5 55.36±0.63
14 6.5 25 1.5 10 6.0 65.41±1.11
15 6.5 30 1.0 25 1.5 71.53±0.43
16 6.5 35 0.5 20 3.0 91.06±1.36
K1 272.17 252.27 354.82 266.41 244.18
K2 260.48 288.63 277.75 277.05 291.25
K3 283.38 300.12 238.60 275.83 279.94
K4 283.36 258.37 228.22 280.10 284.02
R 22.90 47.85 126.60 13.68 47.07
优势水平 3 3 1 4 2
优势组合 pH6.0, 温度30℃, 载体量0.5g, 浓度25mmol/L, 时间3.0h
主次因素 载体量>温度>时间>pH>浓度
Table 4 Optimization of orthogonal experimental results and analysis of immobilization conditions through adsorption in the presence of NH4Cl
Fig.3 Optimization of lipase immobilization in the presence of mannose (a) Effect of buffers on the immobilization of lipase (b) Effect of pH on the immobilization of lipase (c) Effect of temperature on the immobilization of lipase (d) Effect of the quantity of kieselguhr on the immobilization of lipase (e) Effect of mannose additive concentration on the immobilization of lipase (f) Effect of immobilizing time on the immobilization of lipase
序号 pH 温度(℃) 载体量(g) 浓度(mmol/L) 时间(h) 相对酶活力(%)
1 6.0 25 0.5 2 1.5 80.57±1.23
2 6.0 30 1.0 5 3.0 55.17±2.50
3 6.0 35 1.5 10 4.5 71.18±1.97
4 6.0 40 2.0 15 6.0 50.25±2.13
5 6.5 25 1.0 10 6.0 82.37±1.91
6 6.5 30 0.5 15 4.5 93.74±0.49
7 6.5 35 2.0 2 3.0 44.10±1.86
8 6.5 40 1.5 5 1.5 54.56±1.79
9 7.0 25 1.5 15 3.0 61.60±1.50
10 7.0 30 2.0 10 1.5 47.96±0.50
11 7.0 35 0.5 5 6.0 100.00±0.81
12 7.0 40 1.0 2 4.5 70.73±2.32
13 7.5 25 2.0 5 4.5 46.93±1.38
14 7.5 30 1.5 2 6.0 48.55±0.79
15 7.5 35 1.0 15 1.5 65.13±0.87
16 7.5 40 0.5 10 3.0 79.81±0.50
K1 257.18 271.47 354.12 243.95 248.23
K2 274.77 245.42 273.40 256.66 240.69
K3 280.29 280.42 235.90 281.32 282.58
K4 240.42 255.34 189.24 270.73 281.16
R 39.87 35.00 164.89 37.37 41.89
优势水平 3 3 1 3 3
优势组合 pH7.0, 温度35℃, 载体量0.5g, 浓度10mmol/L, 时间4.5h
主次因素 载体量>时间>pH>浓度>温度
Table 5 Optimization of orthogonal experimental results and analysis of immobilization conditions through adsorption in the presence of mannose
Fig.4 Optimization of lipase immobilization in the presence of glycine (a) Effect of buffers on the immobilization of lipase (b) Effect of pH on the immobilization of lipase (c) Effect of temperature on the immobilization of lipase (d) Effect of the quantity of kieselguhr on the immobilization of lipase (e) Effect of glycine additive concentration on the immobilization of lipase (f) Effect of immobilizing time on the immobilization of lipase
序号 pH 温度(℃) 载体量(g) 浓度(mmol/L) 时间(h) 相对酶活力(%)
1 6.0 20 0.5 10 3.0 89.55±0.52
2 6.0 25 1.0 15 4.5 70.73±1.11
3 6.0 30 1.5 20 6.0 52.93±0.52
4 6.0 35 2.0 25 7.5 50.92±0.51
5 6.5 20 1.0 20 7.5 78.02±2.12
6 6.5 25 0.5 25 6.0 86.82±1.59
7 6.5 30 2.0 10 4.5 48.21±0.54
8 6.5 35 1.5 15 3.0 50.09±0.82
9 7.0 20 1.5 25 4.5 75.86±1.08
10 7.0 25 2.0 20 3.0 66.10±1.57
11 7.0 30 0.5 15 7.5 100.00±1.42
12 7.0 35 1.0 10 6.0 72.46±0.57
13 7.5 20 2.0 15 6.0 59.18±1.06
14 7.5 25 1.5 10 7.5 61.70±0.77
15 7.5 30 1.0 25 3.0 76.22±0.89
16 7.5 35 0.5 20 4.5 81.37±0.88
K1 264.13 302.61 357.74 271.92 281.97
K2 263.15 285.36 297.43 280 276.17
K3 314.42 277.36 240.58 278.41 271.39
K4 278.47 254.84 224.42 289.83 290.64
R 51.27 47.76 133.33 17.91 19.25
优势水平 3 1 1 4 4
优势组合 pH7.0温度20℃载体量0.5浓度25时间7.5h
主次因素 载体量>pH>温度>时间>浓度
Table 6 Optimization of orthogonal experimental results and analysis of immobilization conditions through adsorption in the presence of glycine
[1]   念保义, 黄志华, 罗菊香 , 等. 脂肪酶转酯化和水解反应拆分薄荷醇的研究进展. 化工进展, 2011,30(6):1320-1325.
[1]   Niang B Y, Huang Z H, Luo J X , et al. Advances in lipase transesterification and hydrolysis reaction for resolution of menthol. Chemical Progress, 2011,30(6):1320-1325.
[2]   蒋振华, 于敏, 任立伟 , 等. 有机相中固定化脂肪酶催化合成植物甾醇酯. 催化学报, 2013,34(12):2255-2262.
doi: 10.1016/S1872-2067(12)60700-1
[2]   Jiang Z H, Yu M, Ren L W , et al. Catalytic synthesis of phytosterol esters by immobilized lipase in organic phase. Chinese Journal of Catalysis, 2013,34(12):2255-2262.
doi: 10.1016/S1872-2067(12)60700-1
[3]   赵天涛, 高静, 张丽杰 , 等. 有机相中脂肪酶催化合成乳酸乙酯. 催化学报, 2006,27(6):537-540.
doi: 10.3321/j.issn:0253-9837.2006.06.018
[3]   Zhao T T, Gao J, Zhang L J , et al. Catalytic synthesis of ethyl lactate by lipase in organic phase. Chinese Journal of Catalysis, 2006,27(6):537-540.
doi: 10.3321/j.issn:0253-9837.2006.06.018
[4]   相欣然, 黄和, 胡燚 . 纳米复合材料固定化酶的研究进展. 无机化学学报, 2017,33(1):1-15.
doi: 10.11862/CJIC.2017.016
[4]   Xiang X R, Huang H, Hu Y . Advances in research on immobilized enzymes of nanocomposites. Journal of Inorganic Chemistry, 2017,33(1):1-15.
doi: 10.11862/CJIC.2017.016
[5]   Tran D N, Balkus K J . Perspective of recent progress in immobilization of enzymes. ACS Catalysis, 2011,1(8):956-968.
doi: 10.1021/cs200124a
[6]   Rodrigues R C, Oritiz C, Berenguer-Murcia A , et al. Modifying enzyme activity and selectivity by immobilization. Chemical Society Reviews., 2013,42(15):6290-6307.
doi: 10.1039/c2cs35231a pmid: 23059445
[7]   Zhang Y, Ge J, Liu Z . Enhanced activity of immobilized or chemically modified enzymes. ACS Catalysis, 2015,5(8):4503-4513.
doi: 10.1021/acscatal.5b00996
[8]   韩志萍, 叶剑芝, 罗荣琼 . 固定化酶的方法及其在食品中的应用研究进展. 保鲜与加工, 2012,12(5):48-53.
doi: 10.3969/j.issn.1009-6221.2012.05.011
[8]   Han Z P, Ye J Z, Luo R Q . Advances in immobilized enzymes and their applications in foods. Preservation and Processing, 2012,12(5):48-53.
doi: 10.3969/j.issn.1009-6221.2012.05.011
[9]   徐珊, 李任强, 张继福 , 等. 乙二醇缩水甘油醚交联海藻酸钠-羧甲基纤维素钠固定化脂肪酶. 中国生物工程杂志, 2017,37(12):77-83.
[9]   Xu S, Li R Q, Zhang J F , et al. Ethylene glycol diglycidyl ether cross-linked with sodium alginate-carboxymethyl cellulose to immobilized lipase. China Biotechnology, 2017,37(12):77-83.
[10]   游金坤, 余旭亚, 赵鹏 . 吸附法固定化酶的研究进展. 化学工程, 2012,40(4):1-5.
doi: 10.3969/j.issn.1005-9954.2012.04.001
[10]   You J K, Yu X Y, Zhao P . Advances in adsorption of immobilized enzymes. Chemical Engineering, 2012,40(4):1-5.
doi: 10.3969/j.issn.1005-9954.2012.04.001
[11]   王跃生, 王洋 . 大孔吸附树脂研究进展. 中国中药杂志, 2006,31(12):961-965.
doi: 10.3321/j.issn:1001-5302.2006.12.002
[11]   Wang Y S, Wang Y . Research progress of macroporous adsorption resin. Chinese Journal of Traditional Chinese Medicine, 2006 , 31(12):961-965.
doi: 10.3321/j.issn:1001-5302.2006.12.002
[12]   黄永林, 阮俊, 沈晓琳 , 等. 大孔吸附树脂分离提取大叶钩藤总生物碱. 广西科学, 2006,13(2):127-129.
doi: 10.3969/j.issn.1005-9164.2006.02.013
[12]   Huang Y L, Ruan J, Shen X L , et al. Separation and extraction of total alkaloids from Uncaria macrophylla by macroporous adsorption resin. Guangxi Science, 2006,13(2):127-129.
doi: 10.3969/j.issn.1005-9164.2006.02.013
[13]   吕洁丽, 杨中汉, 袁珂 . 新型凝胶树脂及大孔吸附树脂在中草药成分分离纯化中的应用. 中药材, 2005,28(3):239-242.
doi: 10.3321/j.issn:1001-4454.2005.03.035
[13]   Lv J L, Yang Z H, Yuan K . Application of new gel resin and macroporous resin in separation and purification of Chinese herbal medicine components. Chinese Medicinal Materials, 2005,28(3):239-242.
doi: 10.3321/j.issn:1001-4454.2005.03.035
[14]   谢雪凤, 张朝晖, 陈培策 . AB-8大孔吸附树脂固定化过氧化氢酶的研究. 材料导报, 2009,23(18):50-53.
doi: 10.3321/j.issn:1005-023X.2009.18.015
[14]   Xie X F, Zhang Z H, Chen P C . Research on immobilization of catalase by AB-8 macroporous adsorption resin. Materials Review, 2009,23(18):50-53.
doi: 10.3321/j.issn:1005-023X.2009.18.015
[15]   赵庆节, 余莹, 周文瑜 , 等. 有机相中大孔吸附树脂固定化酶催化拆分消旋萘普生. 华东理工大学学报, 2001,27(4):423-426.
doi: 10.3969/j.issn.1006-3080.2001.04.026
[15]   Zhao Q J, Yu Y, Zhou W Y , et al. Catalytic resolution of racemic naproxen by macroporous adsorption resin immobilized enzyme in organic phase. Journal of East China University of Science and Technology, 2001,27(4):423-426.
doi: 10.3969/j.issn.1006-3080.2001.04.026
[16]   王海雄, 吴侯, 翁新楚 . 大孔吸附树脂固定猪胰脂酶的初步研究. 生物技术, 2004,14(3):27-30.
doi: 10.3969/j.issn.1004-311X.2004.03.015
[16]   Wang H X, Wu H, Weng X C . Preliminary study on fixation of porcine pancreatic lipase by macroporous adsorption resin. Biotechnology, 2004,14(3):27-30.
doi: 10.3969/j.issn.1004-311X.2004.03.015
[17]   Chang C S, Hsu C S . Enhancement of enantioselectivity on reaction rate of the synthesis of(S)-ketoprofen hydroxyalkyl ester in organic solvents via isopropanol-dried immobilized lipase. Jonrnal of Chemical Technology and Biotechnology, 2005,80(5):537-544.
doi: 10.1002/jctb.1232
[18]   彭维, 欧爱芬 . 金属离子对酶活性影响研究. 酿酒, 2013,40(1):60-62.
doi: 10.3969/j.issn.1002-8110.2013.01.018
[18]   Peng W, Ou A F . Research on the effect of metal ions on enzyme activity. Wine Making, 2013,40(1):60-62.
doi: 10.3969/j.issn.1002-8110.2013.01.018
[19]   候爱军, 徐冰斌, 梁亮 , 等. 改进铜皂-分光光度法测定脂肪酶活力. 皮革科学与工程, 2011,21(1):22-27.
doi: 10.3969/j.issn.1004-7964.2011.01.005
[19]   Hou A J, Xu B B, Liang L , et al. Improved copper soap-spectrophotometry for determination of lipase activity. Leather Science and Engineering, 2011,21(1):22-27.
doi: 10.3969/j.issn.1004-7964.2011.01.005
[20]   袁勤生 . 酶与酶工程.第二版.上海: 华东理工大学出版社, 2012: 38-39.
[20]   Yuan Q S. Enzyme and enzyme engineering. 2nd ed. Shanghai: East China University of Science and Technology Press, 2012: 38-39.
[21]   候丽云 . 脂肪酶固定化及其在催化合成乙酸香茅酯中的应用研究. 扬州:扬州大学, 2013.
[21]   Hou L Y . Lipase immobilization and its application in catalytic synthesis of citronellyl acetate. Yangzhou :Yangzhou University, 2013.
[22]   徐珊, 李任强, 张继福 , 等. 使用国产环氧树脂LXEP-120固定化脂肪酶研究. 广西师范大学学报(自然科学版), 2018,36(4):108-118.
[22]   Xu S, Li R Q, Zhang J F , et al. Immobilization of lipase using domestic epoxy resin LXEP-120. Journal of Guangxi Normal University (Natural Science Edition), 2018,36(4):108-118.
[1] CHEN Kai-tong,ZHENG Wen-long,YANG Li-rong,XU Gang,WU Jian-ping. Immobilized L-threonine Aldolase by Amino Resin and Its Application[J]. China Biotechnology, 2021, 41(9): 55-63.
[2] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Marine Candida Lipase Using Novel Epoxy Cross-linker and Amino Carrier[J]. China Biotechnology, 2020, 40(5): 57-68.
[3] ZHU Heng,ZHANG Ji-fu,ZHANG Yun,SUN Ai-jun,HU Yun-feng. Immobilization of Lipase Through Cross-linking of Polyethylene Glycol Diglycidyl Ether with Amino Carrier LX-1000EA[J]. China Biotechnology, 2020, 40(1-2): 124-132.
[4] ZHANG Ying,WANG Ying,YANG Li-rong,WU Jian-ping. DA-F127 Hydrogel Embedded Immobilized the Nitrile Hydratase-Containing Cells[J]. China Biotechnology, 2019, 39(11): 70-77.
[5] Kai DU,Zhuo-ling ZHANG,Ting-hua LI,Wei RAO. The Research Progress of Antibody Immobilization[J]. China Biotechnology, 2018, 38(4): 78-89.
[6] LI Ji-bin, CHEN Zhi, CHEN Hua-you. Research Progress on Cloning, Expression,Immobilization and Molecular Modification of Nitrilase[J]. China Biotechnology, 2017, 37(9): 141-147.
[7] SI Hong-yu, WANG Bing-lian, LIANG Xiao-hui, ZHANG Xiao-dong. Study of Rapid Determination for Glycerol Content by Enzyme Electrode[J]. China Biotechnology, 2016, 36(12): 79-85.
[8] WANG Kai, ZHANG Wei, LI Shi-weng. Study and Application of Phytase[J]. China Biotechnology, 2015, 35(9): 85-93.
[9] TANG Yu-lan, CHEN Zuan-guang, CHENG Zhi-yi. Research Progress in Multi-enzyme Co-immobilization Reaction Systems[J]. China Biotechnology, 2015, 35(1): 82-87.
[10] LI Yang, LI Ru-ying, JI Min. Application of Immobilization Technology on Enhancing Hydrogen Production by Photosynthetic Bacteria[J]. China Biotechnology, 2014, 34(7): 96-101.
[11] LI Gang-rui, LI Lin-li, FAN Xang, MENG Yan-fa. Immobilization and Properties of Lipase from Aspergillus niger on Sol-gels,Hydrophobic Supports[J]. China Biotechnology, 2014, 34(4): 78-84.
[12] YAN Xiang-ru, LIN Li-ping, HE Ming-fang, CHEN Wei-ping. Immobilized Technology Impact on Fermentation ATP Ability of Yeast[J]. China Biotechnology, 2012, 32(07): 102-106.
[13] CHEN Si-qun, SUN Zi-cai, CHEN Jian-jun, CHEN Xiao-hui. Applications of the Carbohydrate-Protein Interaction on Immobilization of Enzyme and on Recognition and Separation of Proteins[J]. China Biotechnology, 2012, 32(04): 83-88.
[14] LV Yan-xia, CHEN Zhao-an, LU Hong-bin, DENG Mai-cun, XUE Song, ZHANG Wei. Characterization of the Photoelectrode Based on the Immobilization of Microalgae[J]. China Biotechnology, 2012, 32(04): 96-102.
[15] SHEN Yu, BAI Feng-wu. Very High Gravity Ethanol Continuous Fermentation in Reaction System Composed by Packing Tubular Reactors[J]. China Biotechnology, 2011, 31(03): 66-70.