Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (09): 49-55    DOI: Q78
    
Cloning, Expression and Analysis of the argH Gene Encoding Argininosuccinate  Lyase from Corynebacterium crenatum
RAO Zhi-ming1,XU Mei-juan1,LU Yuan-xiu1,ZHOU Chen1,LAN Chun-yan1,DOU Wen-fang2,ZHANG Xiao-mei2,XU Hong-yu2,XU Zheng-hong1,2
1.Key Laboratory of Industrial Biotechnology, Ministry of Education,Wuxi 214122,China
2.Lab of Pharmaceutical Engineering, School of Medicine and Pharmaceutics, Jiangnan University, Wuxi 214122,China
Download: HTML   PDF(682KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

 Argininosuccinate lyase (EC 4.3.2.1; AL) genes from L-arginine producing mutant Corynebacterium crenatum SYPA were cloned and sequenced. Analysis of argH sequences revealed that only one ORF existed , which used ATG as the initiation codon and coded a peptide of 476 amino acids with acalculated molecular weight of 50.8 kDa. Only 10 nucleotide difference was found in the structure gene and the difference caused 3 change of amino acid by comparision of the gene sequences between C. crenatum SYPA and the Corynebacterium glutamicum ATCC 13032. The ORF sequence of argHs showed homologies of 99.4%. The argH gene from C. crenatum was expressed both in E.coli and C. crenatum SYPA. Then AL was purified by Ni-NTA affinity chromatography and the enzymatic characterization of it was determines. The expression vector pJC1-tac-argH was transducted to C. crenatum SYPA. The AL was expressed well and the activity was improved by 66.8%. The fermentive character of CCH1(pJC1-tac-argH) was also primary analysed. The result shows that the acid producing ability of recombinant strain is improved by 14.2%.



Key wordsL-arginine      Corynebacterium crenatum      Arginieosuccinate Lyase      Characterization of enzyme      Fermentation     
Received: 09 April 2010      Published: 25 August 2010
Cite this article:

RAO Zhi-Meng, XU Mei-Juan, LIU Yuan-Xiu, ZHOU Chen, LA Chun-Yan, DOU Wen-Fang, ZHANG Xiao-Mei-Hu, HONG Yu, HU Zheng-Hong. Cloning, Expression and Analysis of the argH Gene Encoding Argininosuccinate  Lyase from Corynebacterium crenatum. China Biotechnology, 2010, 30(09): 49-55.

URL:

https://manu60.magtech.com.cn/biotech/Q78     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I09/49

[1] Ikeda M. Amino acid production processes. Adv Biochem Eng Biotechnol, 2003, 79: 135. 
[2] Rainer H B, Stefanie M B, Jiirgen C F. The Largininenitric oxide pathway: role in atherosclerosis and therapeutic implications. Atherosclerosis, 1996, 127(1):111. 
[3] Utagawa T. Production of arginine by fermentation. J Nutr, 2004, 134 (10): 28542867. 
[4] 熊筱晶, 窦文芳, 许正宏. L精氨酸高产菌的诱变育种及其摇瓶产酸条件. 无锡轻工大学学报, 2003, 22(2): 1013. Xiong Y J, Dou W F, Xu Z H.Journal of Wuxi University of Light Industry, 2003, 22(2): 1013. 
[5] Hirose Y, Shibai H. Amino acid fermentation. Biotechnol Bioeng, 1980, 22: 111-125. 
[6] 许正宏, 窦文芳, 王霞. 氮源及其添加模式对钝齿棒杆菌JDN2875合成L精氨酸的影响. 应用与环境生物学报, 2006, 12(3):381385. Xu Z H, Dou W F, Wang X.Chinese Journal of Applied & Environmental Biology, 2006, 12(3):381385. 
[7] Joseph S, David W R. Molecular Cloning. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2001.15231574. 
[8] 徐美娟, 杨套伟, 饶志明,等. 克雷伯氏菌甘油脱氢酶dhaD的克隆表达、纯化及酶学性质研究. 中国生物工程杂志, 2008, 28(2): 3035. Xu M J, Yang T W, Rao Z M et al.China Biotechnology, 2008, 28(2): 3035. 
[9] Bhaumik P, Koski M K , Bergmann U,et al. Structure determination and refinement at 2.44  resolution of argininosuccinate lyase from Escherichia coli. Acta Cryst, 2004, 60(11): 19641970. 
[10] Troshina O, Hansel A, Lindblad P. Cloning, characterization, and functional expression in Escherichia coli of argH encoding argininosuccinate lyase in the Cyanobacterium Nostoc sp. strain PCC 73102. Curr Microbiol, 2001, 43(4): 260264. 
[11] Bradford M M. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem, 1976, 72: 248254. 
[12] 王镜岩,沈同.生物化学.第三版. 北京:高等教育出版社,2001. 78278. Wang J Y, Shen T. Biochemistry. 3 rd. Beijing: Hign Education Press, 2001.78278. 
[13] 郝宁,赵智,王宇,等.钝齿棒杆菌N乙酰谷氨酸激酶基因的克隆、序列分析及表达. 微生物学报, 2006, 46(1):9094. Hao N, Zhao Z, Wang Y.Acta Microbiologica Sinica, 2006, 46(1):9094. 
[14] Xu H, Dou W.F, Xu H Y, et al. A twostage oxygen supply strategy for enhanced Larginine production by Corynebacterium crenatum based on metabolic fluxes analysis. Biochem Eng J, 2009, 43(1): 4151. 
[15] 宁正祥. 食品成分分析手册. 北京:中国轻工业出版社, 2001.5055. Ning Z X. Handbook of Food Composition Analysis. Beijing: China Light Industry Press, 2001.5055.

[1] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[2] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[3] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[4] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[5] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[6] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[7] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[8] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.
[9] Yan HUANG,Yi-rong SUN,Jing WU,Ling-qia SU. Optimization of High Density Fermentation of Recombinant Humicola insolens Cutinase[J]. China Biotechnology, 2019, 39(1): 63-70.
[10] Jun-jie ZHAO,Long ZHANG,Liang WANG,Xu-sheng CHEN,Zhong-gui MAO. Breeding and Physiological Characteristics of ε-Polylysine High-Producing Strain with Double Antibiotic Resistance[J]. China Biotechnology, 2018, 38(8): 59-68.
[11] Qun-feng SHU,Mei-juan XU,Jing LI,Xian ZHANG,Tao-wei YANG,Zheng-hong XU,Zhi-ming RAO. Producing L-ornithine by Heterologous Expression of N-acetyl-L-ornithine Deacetylase in Corynebacterium crenatum[J]. China Biotechnology, 2018, 38(7): 29-39.
[12] Fan SUN,Ling-qia SU,Kang ZHANG,Jing WU. D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells[J]. China Biotechnology, 2018, 38(7): 83-88.
[13] Ya-chao FAN,Lin ZHANG,Xiao-shu LI,Peng-xiang WANG,Xin-wu YAO,Kai QIAO. Study on the Fermentation of 2,3-Butanediol by Klebsiella pneumoniae CICC10011[J]. China Biotechnology, 2018, 38(2): 68-74.
[14] Li-na CHENG,Hai-yan LU,Shu-ling QU,Yi-qun ZHANG,Juan-juan DING,Shao-lan ZOU. Production of Cyclic Adenosine Monophosphate (cAMP) by Microbial Fermentation——A Review[J]. China Biotechnology, 2018, 38(2): 102-108.
[15] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.