Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2010, Vol. 30 Issue (09): 110-117    DOI: Q815
    
Progresses in Fermentative Production of γ-Linolenic Acid
LI Zhi-yong,JI Xiao-jun,CONG Lei-lei,NIE Zhi-kui,PENG Chao,GAO Zhen,HUANG He
State Key Laboratory of MaterialsOriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China
Download: HTML   PDF(663KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

γ-Linolenic acid is an essential fatty acid of ω-6 series with a variety of special physiological function for human beings. It is available commercially in seed oils from black currant, evening primrose, borage, and so on. However, this means is limited by many factors, and can not meet the huge requirement of human beings. Therefore, it might be expected that potential commercial sources of γ-linolenic acid may be found among the microorganism. The present review outlines the status of our current understanding on γ-linolenic acid by microbial fermentation, including the strains and the metabolite pathways. Breeding strategies, including mutation breeding and molecular breeding, are especially introduced. In addition, this paper also summarized the effect of various factors on the fermentative production of γ-linolenic acid, such as carbon sources, nitrogen sources, cheap substances, trace minerals, temperature, morphology, and solid state fermentation. At last, the future research emphasis was prospected.



Key wordsγ-linolenic acid      Microorganism      Fermentation      Breeding      Metabolic control     
Received: 11 May 2010      Published: 25 August 2010
Cite this article:

LI Zhi-Yong, JI Xiao-Dun, CONG Lei-Lei, NIE Zhi-Kui, BANG Chao, GAO Zhen, HUANG He. Progresses in Fermentative Production of γ-Linolenic Acid. China Biotechnology, 2010, 30(09): 110-117.

URL:

https://manu60.magtech.com.cn/biotech/Q815     OR     https://manu60.magtech.com.cn/biotech/Y2010/V30/I09/110

[1] 林峰, 张燕. γ亚麻酸及其研究和应用. 中国药学杂志, 1994, 29(5): 263267. Lin F, Zhang Y. Chinese Pharmaceutical Journal, 1994, 29(5): 263267. 
[2] Laidlaw M, Holub B J. Effects of supplementation with fish oil–derived n3 fatty acids and γlinolenic acid on circulating plasma lipids and fatty acid profiles in women. American Journal of Clinical Nutrition, 2003, 77(1): 3742. 
[3] Guivernau M, Meza N, Barja P, et al. Clinical and experimental study on the longterm effect of dietary gammalinolenic acid on plasma lipids, platelet aggregation, thromboxane formation, and prostacyclin production. Prostaglandins, Leukotrienes and Essential Fatty Acids, 1994, 51(5): 311316. 
[4] FanY Y, Ramos K S, Chapkin R S. Dietary gamma linolenic acid enhances mouse macrophage  derived prostaglandin E1 which inhibits vascular smooth muscle cell proliferation. The Journal of Nutrition, 1997, 127(9): 17651771. 
[5] GiamarellosBourboulis E J, Grecka P, DionyssiouAsteriou A, et a1. In vitro influence of polyunsaturated fatty acids on nosocomial Pscudomonas aeruginosa: a preliminary report. International Journal of Antimicrobial Agents, 1995, 6(1): 4750. 
[6] Kapoor R, Huang Y S. Gamma linolenic acid: an antiinflammatory omega6 fatty acid. Current Pharmaceutical Biotechnology, 2006, 7(6): 531534. 
[7] 董杰明, 吴锐华, 袁锠鲁, 等. γ亚麻酸的保健作用. 卫生研究, 2003, 32(3): 299301. Dong J M, Wu R H, Yuan C L, et al. Journal of Hygiene Research, 2003, 32(3): 299301. 
[8] Jiang W G, Hiseox S, Hallett M B, et a1. Regulation of the expression of ecadherin on human cancer cells by γ linolenic acid (GLA). Cancer Research, 1995, 55(21): 50435048. 
[9] 曹中春, 张力, 周晓刚, 等. 亚麻酸膳食干预对免疫系统疾病的调节作用. 中国油脂, 2000, 25(6): 189191. Cao Z C, Zhang L, Zhou X G, et al. China Oils and Fats, 2000, 25(6): 189191. 
[10] Kinchington D, Randall S, Winter M, et a1. Lithium gammalinolenateinduced cytotoxicity against cells chronically infected with HIV1. FEBS Letters, 1993, 330(2): 219221. 
[11] 苏桂红. 亚麻酸的开发与应用. 黑龙江医药, 2004, 17(2): 142143. Su G H. Heilongjiang Medicine Journal, 2004, 17(2): 142143. 
[12] 张耀, 方向明. γ亚麻酸干预经前综合征的临床观察. 中国医师杂志, 2002, 4(11): 1281. Zhang Y, Fang X M. Journal of Chinese Physician, 2002, 4(11): 1281. 
[13] Heiduschka A, Lüft K. Das fette Oel der Samen der Nachtkerze (Oenothera biennis) und über eine neue Linolensure. Archiv der Pharmazie, 1919, 257(1): 3369. 
[14] 田歆珍, 王贤磊, 孙桂琳, 等. γ亚麻酸的研究进展. 生物技术, 2008, 18(1): 8992. Tian X Z, Wang X L, Sun G L, et al. Biotechnology, 2008, 18(1): 8992. 
[15] 海华, 尚德静, 李庆伟. 真菌发酵生产γ亚麻酸的研究进展. 工业微生物, 2002, 32(4): 4650. Hai H, Shang D J, Li Q W. Industrial Microorganism, 2002, 32(4): 4650. 
[16] Bernhard K, Albrecht H. Die lipide aus phycomyces blakesleeanus. Helvetica Chimica Acta, 1948, 31(4): 977988. 
[17] Fakas S, Papanikolaou S, Batsos A, et al. Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass and Bioenergy, 2009, 33(4): 573580. 
[18] Xian M, Yan J, Kang Y, et al. Production of γlinolenic acid by Mortierella isabellina grown on hexadecanol. Letters in Applied Microbiology, 2001, 33(5): 367370. 
[19] Xian M, Kang Y, Yan J, et al. Production of linolenic acid by Mortierella isabellina grown on octadecanol. Current Microbiology, 2002, 44(2): 141144. 
[20] De Oliveira Carvalho P, De Oliveira J G, Maria P G. Enhancement of gammalinolenic acid production by the fungus Mucor sp LB54 by growth temperature. Revista de Microbiologia, 1999, 30(2): 170175. 
[21] TaukTornisielo S M, Arasato L S, de Almeida A F, et al. Lipid formation and gammalinolenic acid production by Mucor circinelloides and Rhizopus sp., grown on vegetable oil. Brazilian Journal of Microbiology, 2009, 40(2): 342345. 
[22] Certik M, Slavikova L, Masrnova S, et al. Enhancement of nutritional value of cereals with gammalinolenic acid by fungal solidstate fermentations. Food Technology and Biotechnology, 2006, 44(1): 7582. 
[23] Streanská S, ajbidor J. Oligounsaturated fatty acid production by selected strains of micromycetes. Folia Microbiologica, 1992, 37(5): 357359. 
[24] Weete J, Shewmaker F, Gandhi S. γLinolenic acid in Zygomycetous fungi: Syzygites megalocarpus. Journal of the American Oil Chemists' Society, 1998, 75(10): 13671372. 
[25] Muhid F, Nawi W N N W, Kader A J A, et al. Effects of metal ion concentrations on lipid and gamma linolenic acid production by Cunninghamella sp. 2A1. OnLine Journal of Biological Sciences, 2008, 8(3): 6267. 
[26] Moreton R S. Physiology of lipid accumulating yeasts//Moreton RS. Single cell oil. Harlow, Essex, England: Longman Scientific and Technical, 1988: 1 32. 
[27] Kavadia A, Komaitis M, Chevalot I, et al. Lipid and γlinolenic acid accumulation in strains of Zygomycetes growing on glucose. Journal of the American Oil Chemists' Society, 2001, 78(4): 341346. 
[28] Nichols B, Wood B. The occurrence and biosynthesis of gammalinolenic acid in a bluegreen alga, Spirulina platensis. Lipids, 1968, 3(1): 4650. 
[29] Ratledge C.Fatty acid biosythesis in microorganisms being used for single cell oil production.Biochimie,2004,86(11):807815. 
[30] Metz J G, Roessler P, Facciotti D, et al. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science, 2001, 293(5528): 290293. 
[31] Ratledge C. Regulation of lipid accumulation in oleaginous microorganisms. Biochemical Society Transactions, 2002, 30(6): 10471050. 
[32] 方心芳. 应用微生物学实验法. 北京: 中国轻工业出版社, 1993: 2223. Fang X F. Applied Microbiology Experiment. Beijing: Chinese Light Industry Press, 1993: 2223. 
[33] 于爱群, 江贤章, 夏晓峰, 等. γ亚麻酸产生菌Mucor sp EM10的筛选及分子鉴定. 生物加工过程, 2009, 7(2): 7478. Yu A Q, Jiang X Z, Xia X F, et al. Chinese Journal of Bioprocess Engineering, 2009, 7(2): 7478. 
[34] 刘阳, 孟晓敏, 张春枝, 等. γ亚麻酸生产菌株的诱变选育. 大连轻工业学院学报, 2006, 25(3): 172175. Liu Y, Meng X M, Zhang C Z, et al. Journal of Dalian Polytechnic University,2006, 25(3): 172175. 
[35] Cohen Z, Didi S, Heimer Y M. Overproduction of γlinolenic and eicosapentaenoic acids by algae. Plant Physiology, 1992, 98(2): 569572. 
[36] 吕飒音, 潘璠. 被抱霉高产γ亚麻酸菌株的选育. 中国生化药物杂志, 2000, 21(2): 7980. Lu S Y, Pan F. Chinese Journal of Biochemical Pharmaceutics, 2000, 21(2): 7980. 
[37] 沈以凌, 谢飞, 虞龙. 低能氮离子注入在γ亚麻酸发酵中的应用研究. 中国酿造, 2009, 202(1): 9699. Shen Y L, Xie F, Yu L. China Brewing, 2009, 202(1): 9699. 
[38] 陈波, 张玲, 贺新生, 等. 用抗性筛选法选育γ亚麻酸( GLA) 高产菌株. 微生物学通报, 2003, 30(1): 5356. Chen B, Zhang L, He X S, et al. Microbiology, 2003, 30(1): 5356. 
[39] 王岳五, 陈宁. 微生物遗传学与实验技术. 天津: 南开大学出版社, 1988: 120. Wang Y W, Chen N. Microbial Genetics and Experimental Technique. Tian jing: Nankai University Press, 1988:120. 
[40] 汪晨辉, 曹健, 曾实. 卷枝毛霉γ亚麻酸高产菌株的选育. 河南工业大学学报(自然科学版), 2005, 26(2): 2427. Wang C H, Cao J, Zeng S. Journal of Henan University of Technology(Natural Science Edition), 2005, 26(2): 2427. 
[41] Hiruta O, Kamisaka Y, Yokochl T, et al. γlinolenic acid production by a low temperatureresistant mutant of Mortierella ramanniana. Journal of Fermentation and Bioengineering, 1996, 82(2): 119123. 
[42] Huang Y S, Chaudhary S, Thurmond J, et al. Cloning of Δ12 and Δ6desaturases from Mortierella alpine and recombinant production of γlinolenic acid in Saccharomyces cerevisiae. Lipids, 1999, 34(7): 649659. 
[43] Dyer J M, Chapital D C, Kuan J C W. Production of linolenic acid in yeast cells expressing an omega3 desaturase from tung (Aleurites fordii). Journal of the American Oil Chemists' Society, 2004, 81(7): 647651. 
[44] Chuang L T, Chenb D C, Nicaudc J M, et al. Coexpression of heterologous desaturase genes in Yarrowia lipolytica. New biotechnology. 2010. doi:10.1016/j.nbt.2010.02.006. 
[45] Zhang Y, Adams I P, Ratledge C. Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5fold increase in lipid accumulation. Microbiology, 2007, 153(7): 20132025. 
[46] Alper H, Stephanopoulos G. Global transcription machinery engineering: A new approach for improving cellular phenotype. Metabolic Engineering, 2007. 9(3): 258267. 
[47] Wang H H, Isaacs F J, Carr P A, et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460(7257): 894899. 
[48] Papanikolaou S, Komaitis M, Aggelis G, et al. Single cell oil (SCO) production by Mortierella isabellina grown on highsugar content media. Bioresource Technology, 2004, 95(3): 287291. 
[49] Fakas S, Certik M, Papanikolaou S, et al. Gammalinolenic acid production by Cunninghamella echinulata growing on complex organic nitrogen sources. Bioresource Technology, 2008, 99(13): 59865990. 
[50] Chen H C and Chang C C. Production of gammalinolenic acid by the fungus Cunninghamella echinulata CCRC 31840. Biotechnology Progress, 1996, 12(3): 338341. 
[51] Kendrick A, Ratledge C. Lipid formation in the oleaginous mould Entomophthora exitalis grown in continuous culture: effects of growth rate, temperature and dissolved oxygen tension on polyunsaturated fatty acids. Applied Microbiology and Biotechnology, 1992, 37(1): 1822. 
[52] Kang H S, Shin H K. Ifluence of medium composition of the production of γlinolenic acid by Mucor sp KCTC 8405P. Korean Journal of Applied Microbiology and Biotechnology, 1989,17: 568573. 
[53] Park J H, Shin H K. High density cell culture of Mucor sp. KCTC 8450P for production of γlinolenic acid in fedbatch culture. Jorunal of Microbiology and Biotechonlogy, 1991, 1(2): 126129. 
[54] Higashiyama K, Murakami K, Tsujimura H, et al. Effects of dissolved oxygen on the morphology of an arachidonic acid production by Mortierella alpina 1S4. Biotechnology and Bioengineering, 1999, 63(4): 442448.
 [55] Jangbua P, Laoteng K, Kitsubun P, et al. Gammalinolenic acid production of Mucor rouxii by solidstate fermentation using agricultural byproducts. Letters in Applied Microbiology, 2009, 49(1): 9197. 
[56] Fakas S, Makri A, Mavromati M, et al. Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresource Technology, 2009, 100(23): 61186120.

[1] MA Qiao-ni,WANG Meng,ZHU Xing-quan. Research Advances in Recombinase-aided Amplification Technology and Its Application in Rapid Detection of Pathogenic Microorganisms[J]. China Biotechnology, 2021, 41(6): 45-49.
[2] SHAO Ying-zhi,CHE Jian,CHENG Chi,JIANG Zhi-yang,XUE Chuang. Advances in Molecular Biological Methods to Improve Extracellular Electron Transport Efficiency of Electroactive Microorganisms[J]. China Biotechnology, 2021, 41(6): 50-59.
[3] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[4] LV Xue-qin, JIN Ke, LIU Jia-heng, CUI Shi-xiu, LI Jiang-hua, DU Guo-cheng, LIU Long. Quantitative Analysis of Membrane Ordering of Living Industrial Model Microorganisms[J]. China Biotechnology, 2021, 41(1): 20-29.
[5] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[6] YANG Na,WU Qun,XU Yan. Fermentation Optimization for the Production of Surfactin by Bacillus amyloliquefaciens[J]. China Biotechnology, 2020, 40(7): 51-58.
[7] GAO Xiao-peng,HE Meng-chao,XU Ke,LI Chun. Research Progress on pH Regulation in the Process of Industrial Microbial Fermentation[J]. China Biotechnology, 2020, 40(6): 93-99.
[8] WANG Meng,ZHANG Quan,GAO Hui-peng,GUAN Hao,CAO Chang-hai. Research Progress on the Biological Fermentation of Xylitol[J]. China Biotechnology, 2020, 40(3): 144-153.
[9] WANG Bao-shi,TAN Feng-ling,LI Lin-bo,LI Zhi-gang,MENG Li,QIU Li-you,ZHANG Ming-xia. Biological Treatment Strategy Improves the Bio-accessibility of Bran Phenols[J]. China Biotechnology, 2020, 40(12): 88-94.
[10] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.
[11] Jing REN,Wan-nong ZOU,Min SONG. Research on the Changing Trend of the New Pattern of International Seed Industry Competition Formed by the Merger of Multinational Seed Industry Companies——Take Intellectual Property as an Example[J]. China Biotechnology, 2019, 39(7): 108-117.
[12] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[13] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[14] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[15] REN Li-qiong,WU Jing,CHEN Sheng. Co-Expression of N-Acetyltransferase Enhances the Expression of Aspergillus nidulans α-Glucosidase in Pichia pastoris[J]. China Biotechnology, 2019, 39(10): 75-81.